\qquad
Name: \qquad

B. Sc. DEGREE (C.B.C.S.S) EXAMINATION, OCTOBER 2018

 (2017 Admission Improvement / Supplementary and 2015 \& 2016 Admission Supplementary)SEMESTER I - COMPLEMENTARY COURSE (PHYSICS) PH1CM1TB - PROPERTIES OF MATTER, MECHANICS AND FOURIER ANALYSIS
(For Mathematics)

Time: Three Hours

PART A

I. Answer all questions. Each question carries $\mathbf{1}$ mark

1. What is meant by elastic fatigue?
2. What is the yield point in stress -strain graph?
3. What is the physical significance of moment of inertia?
4. Define SHM with one example.
5. What is meant by odd and even functions?

PART B

II. Answer any five questions. Each question carries 2 marks
6. Derive the expression for work done per unit volume in the case of volume strain.
7. What are I section girders?
8. Distinguish between angle of twist and angle of shear.
9. Derive the relation connecting torque and angular acceleration.
10. Obtain an expression for moment of inertia of a thin circular ring about a diameter.
11. State Dirichlet's conditions.
12. Find the amplitude, time period, frequency and initial phase of a harmonic oscillator described by the equation $x=5 \sin (100 \pi t+\pi / 3)$.
13. What is sharpness of resonance? Explain the effect of damping on sharpness of resonance.
(5 $\times 2=10$)

PART C

III. Answer any five questions. Each question carries $\mathbf{5}$ marks
14. What force is required to stretch a wire $1 \mathrm{sq} . \mathrm{cm}$ in cross-section to double its length? $\mathrm{Y}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$.
15. A cantilever shows a depression of 1 cm at the loaded end. What is the depression at its midpoint?
16. A cube of aluminium of side 10 cm is subjected to a shearing force of 10 N . The top surface of the cube is displaced by 0.01 cm with respect to the bottom. Calculate the shearing stress, shearing strain and modulus of rigidity.
17. A wheel of mass 5 Kg and radius of gyration 40 cm is rotating at 210 rpm . Find the moment of inertia and kinetic energy in MKS unit.
18. Four spheres each of diameter $2 a$ and mass m are placed with their centres on the four corners of a square of side \mathbf{b}. Calculate the moment of inertia of the system about any side of the square.
19. A body is executing SHM along a straight line. When the displacement is one-fourth of the amplitude, calculate its kinetic and potential energies.
20. A mass 1 kg is suspended from a spring of force constant $10^{2} \mathrm{~N} / \mathrm{m}$ and damping coefficient $10 \mathrm{Ns} / \mathrm{m}$. The spring is driven by a periodic force of peak value 10 N and of frequency double the natural frequency of the system. Calculate the amplitude of vibration.
21. Discuss Fourier analysis of a square wave.

PART D

IV. Answer any two questions. Each question carries 10 marks

22. Derive the expression for bending moment of a bent bar of rectangular cross-section.
23. What is a flywheel? How can we find the moment of inertia of a flywheel?
24. Calculate the moment of inertia of a circular disc (i) about an axis through its centre and perpendicular to its plane (ii) about a diameter (iii) about a tangent
25. Deduce the differential equation of a damped harmonic oscillator and discuss in detail the case of overdamping and underdamping.
