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1 

INTRODUCTION 
 

 

 
 
 
 

 
Convex geometry is a branch of mathematics that delves into the intricate properties and 

relationships associated with convex sets, which hold significant importance across various 

mathematical disciplines and practical applications. A convex set is defined as a subset of a 

vector space in which the line segment connecting any two points within the set lies entirely 

within the set itself. This seemingly simple definition gives rise to a rich and fascinating field 

that encompasses a wide range of concepts and theorems. 

 
One of the central concepts in convex geometry is the convex hull. The convex hull of a set is the 

smallest convex set that contains the original set. It can be thought of as the "envelope" that 

wraps around the set while maintaining the convexity property. Understanding convex hulls is 

crucial in various areas, including optimization, computational geometry, and operations 

research. 

 
Polytopes, which are higher-dimensional generalizations of polygons and polyhedra, are another 

key element of convex geometry. Polytopes are convex sets with additional structure, often 

defined by a set of linear inequalities. They provide a geometric framework for studying 

combinatorial and algebraic properties and have connections to areas such as linear programming 

and discrete geometry. 

 
Carathéodory 's theorem, a cornerstone in convex geometry, offers a succinct insight into the 

structure of convex sets. Originating from the work of Constantin Carathéodory, the theorem 
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delineates that any point within the convex hull of a set in Rn can be expressed as a convex 

combination of at most n+1 points from the set. 

This fundamental result significantly simplifies the characterization of points in convex hulls, 
reducing the complexity of geometric and optimization problems. With applications spanning 
computational geometry, optimization theory, and convex analysis, Carathéodory's theorem stands 
as a key pillar in understanding the geometric properties and practical implications of convex sets, 
contributing to diverse mathematical disciplines and problem-solving methodologies. 

 
Beyond these fundamental concepts, convex geometry has far-reaching implications in 

optimization problems. Convex optimization involves the task of minimizing (or maximizing) a 

convex function over a convex set, making it a powerful tool in fields like machine learning, 

signal processing, and operations research. The beauty of convex optimization lies in the 

existence of efficient algorithms and the guarantee of finding global optima. 

 
Functional analysis, a branch of mathematics dealing with vector spaces of functions, also draws 

extensively from convex geometry. Convex sets play a crucial role in the study of Banach 

spaces, where the convexity of the unit ball is a defining property. This connection between 

convex geometry and functional analysis provides a deep understanding of spaces of functions 

and their properties. 

 
Convex geometry is a captivating field that explores the geometric properties and relationships 

inherent in convex sets. From convex hulls and polytopes to the profound implications in 

optimization and functional analysis, convex geometry weaves a rich tapestry of mathematical 

concepts with broad applications. Its impact extends far beyond theoretical realms, making it a 

cornerstone in various scientific and technological advancements. 
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CONVEX SETS 
 

 

 
 

 
A set C is convex if the line segment between any two points in C lies in C, i.e. ∀x1,x2 ∈ C,∀θ ∈ 

[0,1] 

θx1 + (1 − θ)x2 ∈ C. 

 

 
Figure 1: Example of a convex set (left) and a non-convex set (right). 

 
Simple examples of convex sets are: 

 
• The empty set ∅, the singleton set {x0}, and the complete space Rn; 

 
• Lines {aTx = b}, line segments, hyperplanes {ATx = b}, and halfspaces {ATx ≤ b}; 

 
• Euclidian balls. 
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We can generalize the definition of a convex set above from two points to any number of points 

n. A convex combination of points x1,x2,...,xk ∈ C is any point of form θ1x1 + θ2x2 + ... + θkxk, 

where θi ≥ 0,i = = 1. Then, a set C is convex iff any convex combination of points in C is in C. 

 

 
(a) (b) 

 
Figure 2: (a) Representation of a convex set as the convex hull of a set of points. 

(b) Representation of a convex set as the intersection of a (possibly infinite) number of 

halfspaces. 

 
We can take this even further to infinite countable sums: C convex iff 

 

 

if the series converges. 

Most generally, C is convex iff for any random variable X over C, P(X ∈ C) = 1, its expectation 

is also in C: 

E(X) ∈ C. 
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2.1 CONVEX SET 

A convex set is a set in which, for any two points within the set, the straight line segment 

connecting them lies entirely within the set. In other words, a set is convex if, given any two 

points A and B in the set, the entire line segment AB is also in the set. This property ensures that 

the set contains all points along the shortest path between any two of its points. Convex sets have 

applications in various fields, including optimization, geometry, and economics. 

 
A set C is considered convex if, for all Y and Z belonging to C, and for any value of µ between 0 

and 1, the expression µY + (1 − µ)Z also belongs to C. This condition defines a convex 

combination of Y and Z. In the context of real finite-dimensional Euclidean vector spaces or 

matrices, this combination represents the closed line segment connecting Y and Z. Therefore, a 

set is convex if the line segment between any two points in the set is also within the set, implying 

that convex sets are connected sets. It's worth noting that a convex set may or may not include 

the origin 0. 

 
2.2 SUBSPACE 

A nonempty subset R of real Euclidean vector space Rn is called a subspace if every 

vector of the form αx + βy , for α,β∈ R , is in R whenever vectors x and y are. 

A subspace is a convex set containing the origin.Any subspace is therefore open in the sense that 

it contains no boundary, but closed in the sense R+R=R 

 
2.3 LINEAR INDEPENDENCE 

Arbitrary given vectors in Euclidean space {Γi∈ Rn, i=1 ... N} are linearly independent 

if and only if, for all ζ ∈  (ζi∈ R) 

Γ1 ζ1 + · · · + ΓN−1 ζN−1 − ΓN ζN = 0 

has only the trivial solution ζ = 0 ; in other words, iff no vector from the given set can be 

expressed as a linear combination of those remaining. 

Geometrically, two nontrivial vector subspaces are linearly independent iff they 

intersect only at the origin. 
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2.4 ORTHANT 

Orthant is the name given to a closed convex set that is the higher-dimensional generalization of 

quadrant from the classical Cartesian partition of R2; a Cartesian cone. The most common is the 

nonnegative orthant Rn
+ or Rn×n

+ (analogue to quadrant I) to which membership denotes 

nonnegative vector- or matrix-entries respectively 

Rn
+ {x ∈ |xi ≥ 0 ∀i} 

2.5 DIMENSION 

Dimension of an arbitrary set ᵶ is Euclidean dimension of its affine hull 

dim ᵶ  dim aff ᵶ = dim aff( ᵶ − s), s ∈ ᵶ 

the same as dimension of the subspace parallel to that affine set aff Z when nonempty. Hence 

dimension (of a set) is synonymous with affine dimension. 

2.6 AFFINE SET 

A nonempty affine set is any subset of Rn that is a translation of some subspace. Any affine set is 

convex and open in the sense that it contains no boundary. 

2.7 EMPTY SET AND EMPTY INTERIOR 

Emptiness ∅ of a set is handled differently than interior in the classical literature. It is 

common for a nonempty convex set to have empty interior; e.g., paper in the real world: An 

ordinary flat sheet of paper is a nonempty convex set having empty interior in R3 but non-empty 

interior relative to its affine hull. 
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2.8 THEOREMS 
 
 

Theorem 1: Intersection of Convex Sets 

Statement: The intersection of convex sets is convex. Convex ≡ convex( ) 

Proof: 

Let x, y be in . Since x, y are in every , the convex combination (1-t)x + ty is also in 

every , making it part of . Thus is convex. 

 
Theorem 2: Convexity of Vector Sum and Difference 

Statement: 

1. The vector sum (Minkowski sum) of convex sets C₁ and C₂ is convex.    

Convex(C₁ + C₂) = convex(Minkowski_Sum(C₁ + C₂) ) 

2. The vector difference of convex sets C₁ and C₂ is convex.     

Convex(C₁ - C₂) = convex (Vector Difference (C₁ , C₂)) 

Proof (for 1): 

Let x = a+b and y = c + d where a, b ∈ C₁ and c, d ∈C₂. 

The convex combination  is , which belongs to  

C₁+ C₂. 

Proof (for 2): 

Let x, y be in C₁ - C₂. The convex combination  is in C₁ - C₂, demonstrating 

the convexity of the vector difference. 

 
Theorem 3: Convexity of Cartesian Product 

Statement: 

The Cartesian product of convex sets  and  is convex. 

Convex ( ) ≡ convex(Cartesian Product (C₁ , C₂)) 

Proof: 

Let ( ), ( ) be in . The convex combination  is 

, which belongs to . 
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Theorem 4: Convexity under Operations 

Statement: 

Convexity is preserved under scaling, rotation/reflection, and translation of convex sets. 

Convex(Operation(T, C)) ≡ T(C) 

Proof (for translation): 

Let C be convex, and  be a translation vector. The convex combination  in C 

becomes  in , preserving convexity. 

 
Theorem 5: Inverse Image Theorem for Convex Sets under Affine Functions 

Statement: 

Let : Rp✕k → Rm✕n be an affine function, expressed as f(X) = AX + B, where A is an  

matrix, X is a  matrix, and B is an  matrix. If C ⊆ Rp✕k is a convex set, then the 

Image of C under , denoted as (c), is convex. Additionally, the inverse image of any convex set 

F⊆ Rm✕n under . denoted as  (F), is convex. 

Proof: 

1. Image Convexity: 

Let , ∈C and λ ∈ [0, 1]. 

Since C is convex, λ  + (1-λ) ∈ C. Consider the images ( ) and ( ) under :  =A( 

)+B,   = A + B 

By the linearity of f, we have: 

(λ  + (1-λ) ) = A(λ  + (1-λ) ) + B = λ  + (1-λ)f( ) 

Since(λ  + (1-λ)  ∈ C and λ  + (1-λ)  is a convex combination of  and 

, it follows that (λ  + (1-λ) ) ∈ . 

Therefore,  is convex. 

2. Inverse Image Convexity: 

Let F⊆ Rm✕n be a convex set, and consider ,  ∈ (F). 

This implies that ,  ∈(F). 

Again, by the linearity of , for any λ ∈ [0, 1], we have: 

(λ  + (1-λ) ) = A(λ  + (1-λ) ) + B = λf(X₁) + (1-λ)f( ) 

Since λ  + (1-λ)  is in F (as F is convex), it follows that (λ  + (1-λ) ) ∈  (F). 
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f 

Therefore,  (F) is convex. 
 
 
 
 

 

 

(a) f 

C 

f (C) 

 
 
 
 

 
(b) 

f − 1(F ) F 

 
Figure 3: (a) Image of convex set in domain of any convex function f is convex, but there is no 

converse. (b) Inverse image under convex function f. 

 
 

In particular, any affine transformation of an affine set remains affine. Inverse of any affine 

transformation, whose image is nonempty and affine, is affine. Ellipsoids are invariant to any 

affine transformation. 

Although not precluded, this inverse image theorem does not require a uniquely invertible 

mapping f . 

Each converse of this two-part theorem is generally false; i.e., given f affine, a convex image 

f(C) does not imply that set C is convex, and neither does a convex inverse image f −1 (F ) imply 

set F is convex. A counterexample, invalidating a converse, is easy to visualize when the affine 

function is an orthogonal projector. 
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3 
 

POLYTOPES AND HULLS 
 

 

 
 
 

 
3.1 CONVEX POLYTOPES 

3.1.1 CONVEXITY IN POLYTOPES 

A convex polytope is, by definition, a convex set. This means that for any two points inside the 

polytope, the line segment connecting them is also entirely contained within the polytope. 

 
3.1.2 REGULAR POLYTOPES 

A regular polytope is a polytope whose symmetry group acts transitively on its flags, 

thus giving it the highest degree of symmetry. In particular, all its elements or j-faces (for all 0 ≤ 

j ≤ n, where n is the dimension of the polytope) — cells, faces and so on — are also transitive on 

the symmetries of the polytope, and are themselves regular polytopes of dimension j≤ n. 

Three classes of regular polytopes exist in every dimension: 

● Regular simplex 

● Measure polytope (Hypercube) 

● Cross polytope (Orthoplex) 

Any other regular polytope is said to be exceptional. 
 

 
In one dimension, the line segment simultaneously serves as the 1-simplex, the 1-hypercube and 

the 1-orthoplex. 

In two dimensions, there are infinitely many regular polygons, namely the regular n-sided 

polygon for n≥3. The triangle is the 2-simplex. The square is both the 2-hypercube and the 2- 

orthoplex. The n-sided polygons for n≥5 are exceptional. 



CONVEX GEOMETRY 

Department of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam | 11 

 

 

In three and four dimensions, there are several more exceptional regular polyhedra and 4- 

polytopes. 

In five dimensions and above, the simplex, hypercube and orthoplex are the only regular 

polytopes. There are no exceptional regular polytopes in these dimensions. 
 

Figure 4: (a) Schlegel wire-frame diagrams of 4-dimensional regular convex polytopes (4- 

polytopes) and (b) 3D projected 4-polytope thin-walled unit cells based on the wire-frame 

diagrams. 

 
3.1.3 SEMIREGULAR POLYTOPE 

A semiregular polytope is a convex polytope where all faces are regular polygons but 

not all vertices have the same number of edges meeting at them. Examples include the 

Archimedean solids in three dimensions, and the 120-cell and 600-cell in four 

dimensions The term semiregular is often used to refer specifically to three-dimensional 

polyhedra, and the generalization to higher dimensions is often described 

using the term uniform polytopes. 
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Figure 5: Archimedean solids 

3.1.4 PROPERTIES 

Combinatorial properties: faces (vertices, edges, ..., facets) of polytopes and their relations, with 

special treatments of the classes of low-dimensional polytopes and of polytopes “with few 

vertices;” 

For a polytope P: 

the faces of dimension 0 are the vertices of P. 

the faces of dimension 1 are the edges of P. 

the faces of dimension dim P−1 are the facets. 

the empty set ∅ and P itself are called the improper faces, all other faces are proper. 

Geometric properties: volume and surface area, mixed volumes, and quermassintegrals, 

including explicit formulas for the cases of the regular simplices, cubes, and cross-polytopes. 

 
3.1.5 DUALITY 

Two polytopes are said to be dual (and each is said to be a dual of the 

other) if their face-lattices are anti-isomorphic. 
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We note that when P and Ql are dual, then P and Q2 are also dual if and only if Ql and Q2 are 

equivalent. 

Eg: The dual polytope of the 16-cell(4-orthoplex) is the tesseract (4-cube). The cells of the 16- 

cell are dual to the 16 vertices of the tesseract. 

V-Polytopes and H-Polytopes 

Convex polytopes are also called convex V-polytopes. Here V stands for vertices. 

Dually, a convex H-polyhedron is the intersection of finitely many 

closed halfspaces. A bounded convex H-polyhedron is called a convex H-polytope. 
 

 
3.1.6 SIMPLEX 

The unit simplex comes from a class of general polyhedra called simplex, having 

vertex-description: given n ≥ k 

conv{xl ∈ Rn | l = 1 ... k+1 , dim aff{xl} = k} 

So defined, a simplex is a closed bounded convex set possibly not full-dimensional. 

Examples of simplex, by increasing affine dimension, are: a point, any line segment, any 

triangle and its relative interior, a general tetrahedron, any five-vertex polychoron, and so 

on. 

 
3.1.7 EULER’S FORMULA 

υ − e + f = 2 for every convex polyhedron, where υ, e, and f are the numbers of vertices, edges, 

and faces of the polyhedron. 

 
3.1.8 HALFSPACE 

A half-space is a set defined by a single affine inequality. Precisely, a half-space in  is a set 

of the form 

where , . A half-space is a convex set, the boundary of which is a hyperplane. 
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A half-space separates the whole space in two halves. The complement of the half-space is the 

open half-space . 

 
3.1.9 HYPERPLANE 

A two-dimensional affine subset is called a plane. An n−1-dimensional affine subset of Rn 

is called a hyperplane. Every hyperplane partially bounds a halfspace. 
 

 
3.2 CONVEX HULL 

3.2.1 CONVEX HULL 

 
The convex hull of a shape is the smallest convex set that contains the set. The convex hull can 

also be defined as the intersection of all convex sets which contain a given subset of a Euclidean 

space. Convex hull can also be defined as the set of all convex combinations of points in the 

subset. the convex hull may be visualized for a bounded subset of the plane, as the shape 

enclosed by a rubber band that is stretched around the subset. 

Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every 

compact convex set is the convex hull of its extreme points. The algorithm problems of finding 

the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces 

are fundamental problems of computational geometry. 

 

 
A convex hull is a geometric object, a polygon, that encloses all of those points in a given a set 

of points on a 2-dimensional plane. The vertices of this polygon maximize the area while 

minimizing the circumference. 

 
ALGORITHMS IN CALCULATING CONVEX HULL 

 
The Convex Hull has a wide variety of applications, ranging from image recognition in robotics 

to determining animal's home range in ethology. There are two algorithms in computing convex 

hull given below. 
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3.2.2 GRAHAM SCAN 

Graham scan first sorts the points and then applies a linear-time scanning algorithm to finish 

building the hull. Graham scan is started by first finding the leftmost point . Then we 

Sort out the points in counterclockwise order around . To compare two 

points p and q, we check whether the triple , p, q is oriented clockwise or counterclockwise. 

Once the points are sorted, we connected them in counterclockwise order, starting and ending at  

. The result is a simple polygon with  vertices. 
 

 
Figure 6: Graham scan 

 
 

To change this polygon into the convex hull, now we apply the ‘three-penny algorithm’. 

Consider we have three pennies, which will sit on three consecutive vertices p, q,r of the 

polygon.At the initial stages these are  and the two vertices after . We now apply the following 

two rules over and over until a penny is moved forward onto : 

• If p, q, r are in counterclockwise order, move the back penny forward to the successor of r. 

• If p, q, r are in clockwise order, remove q from the polygon, add the edge pr, and move the 

middle penny backward to the predecessor of p. 
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Figure 7: Graham scan method 

 
Whenever a penny moves forward, it moves onto a vertex that hasn’t seen a penny before. 

Thus the first rule is applied n−2 times. 

Also whenever a penny moves backwards, a vertex is removed from the polygon thus the second 

rule is applied exactly n − h times, where h is the number of convex hull vertices. 

 
3.2.3 JARVIS’S ALGORITHM 

The simplest algorithm for computing convex hulls simply simulates the process of 

wrapping a piece of string around the points. This algorithm is usually called Jarvis’s march, it is 

also referred to as the gift-wrapping algorithm. 

Jarvis’s march starts by computing the leftmost point  (this is the point whose x-coordinate 

is smallest), as it is the leftmost point which must be the convex hull vertex. 

 
Instead of sorting, it just loops through all of the points again in a brute force way to find the 

point that makes the smallest counterclockwise angle with reference to the previous vertex. It 

simply repeats this iteration through all of the points until all of the vertices are determined and it 

gets back to the starting point. 
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Figure 8: Jarvis Loop 
 
 

Looping through every point for each vertex may seem a lot more inefficient, but the algorithm 

terminates as soon as it finds all of the vertices. This means that if the number of vertices is 

small, then it'll perform better than the Graham Scan algorithm. 

 
By the way, the function for finding the point with the smallest counterclockwise angle is exactly 

the same as the one used previously that makes use of the cross product. Since the vertices are 

collinear points, it is a little easier to pick the point that is furthest away distance wise, without 

needing to worry about the slope of the line. 

 
3.2.4 CARATHEODORY’S THEOREM 

 
Theorem: (Caratheodory’s Theorem) Let X be a nonempty subset of Rn. 

 
1. Every nonzero vector of cone(X) can be represented as a positive 

combination of linearly independent vectors from X. 

2. Every vector from conv(X) can be represented as a convex combination of at 

most n + 1 vectors from X. 

Proof. 

1) Let x ∈ cone(X) and x 6= 0. Suppose m is the smallest integer such that x is of the form  

, where αi > 0 and xi ∈ X. 

Suppose that xi are not linearly independent. Therefore, there exist λi with at least one λi positive, 

such that  

Consider γ, the largest γ such that α − γλi ≥ 0 for all i. 
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Then  is a representation of x as a positive combination of less than m vectors, 

contradiction. Hence, xi are linearly independent. 

2) Consider Y = {(x,1) : x ∈ X}. Let x ∈ conv(X). Then , where = 1, so (x,1) 

∈ cone(Y ). 

By 1), (x,1) = 1), where αi > 0. Also, (x1,1),...,(xl,1) are linearly independent vectors in 

Rn+1(at most n+1). Hence, , 
 

 

 
Carathéodory's theorem serves as a cornerstone in convex geometry, elucidating a crucial 
relationship between the convex hull of a set of points and the dimensionality of the space in 
which those points reside. It states that any point within the convex hull of a set S in  
can be expressed as a convex combination of at most d+1 points from S. This theorem not only 
characterizes the structure of convex hulls by limiting the number of extreme points necessary to 
define any point within them but also facilitates computational efficiency in constructing convex 
hulls by minimizing the number of extreme points to consider. Furthermore, Carathéodory's 
theorem underscores the intrinsic connection between the dimensionality of the space and the 
complexity of the convex hull, providing fundamental insights into the geometrical properties 
and computational aspects of convex sets. 
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4 
 

APPLICATION OF CONVEX SET 
 

 

 
 
 

 
Convex sets have wide-ranging applications in various fields due to their mathematical properties 

and geometric characteristics. Here are some common applications of convex sets 

4.1. CONVEX OPTIMIZATION: 

 
Convex optimization problems are widely studied and applied in fields such as engineering, 

economics, finance, and machine learning. Many real-world optimization problems can be cast as 

convex optimization problems, allowing for efficient and guaranteed algorithms to find optimal 

solutions. 

Convex optimization is a field of mathematical optimization focused on solving problems where 

both the objective function and the constraints are convex. Convexity is a mathematical property 

that has important implications in optimization because it guarantees the existence of global optima 

and makes it possible to efficiently find solutions. 

In convex optimization, the goal is to minimize (or maximize) a convex objective function subject 

to convex constraints. The general form of a convex optimization problem is; 

Minimize  (x) 

 
Subject to  (x) ≤ 0, i = 1,…….,m 

 
(x) = 0, i= 1,. ...... ,p 
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x∈  is the optimization variable 

 
:  → R is the objective or cost function 

 
→R,i=1, . . . , m, are the inequality constraint functions 

 
:  → R , are the equality constraint functions some key points about convex optimization: 

 
1.  Global Optimality: Convex optimization problems have the property that any local 

minimum is also a global minimum. This is a significant advantage when compared to 

non-convex optimization problems. 

2. Efficiency: Due to the structure of convex functions, there are efficient algorithms for 

solving convex optimization problems. Interior-point methods and first-order methods 

are commonly used. 

3. Applications: Convex optimization has numerous applications, including but not limited 

to machine learning, finance, signal processing, control systems, and operations 

research. Many real-world problems can be formulated as convex optimization 

problems. 

4. Duality: Convex optimization problems often come with associated dual problems. The 

duality theory provides insights into the optimization problem and helps in deriving 

bounds on the optimal value. 

5. Examples: Common examples of convex optimization problems include linear 

programming, quadratic programming, and convex quadratic programming. 

Overall, convex optimization is a powerful and widely used tool in various fields for solving 
optimization problems with desirable properties . 

: 
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4.2. ECONOMICS AND GAME THEORY: 

 
Convex sets hold immense importance in both economics and game theory due to their 

versatility and applicability across various contexts. In economics, they provide a fundamental 

framework for modeling individual behavior and economic interactions. For instance, utility 

functions, which represent individual preferences, exhibit convexity to capture diminishing 

marginal utility, a key concept in consumer theory. Similarly, the production possibility frontier, 

illustrating the trade-offs between different goods an economy can produce, relies on convex sets 

to depict increasing opportunity costs. Decision-making processes, including consumption 

choices and resource allocation, are analyzed using convex sets to represent feasible choice sets, 

aiding in understanding how individuals and firms make decisions under constraints. 

In game theory, convex sets play a pivotal role in modeling strategic interactions among rational 

decision-makers. Strategies and their spaces are often represented as convex sets, ensuring that 

any convex combination of strategies remains within the feasible space. This property is essential 

for defining equilibrium concepts such as Nash equilibrium, where players' strategies are best 

responses to each other within a convex strategy space. Additionally, convex hulls, derived from 

convex sets, are used to identify equilibrium outcomes in various games, providing geometric 

interpretations that facilitate analysis and prediction. 

Moreover, convex sets contribute to establishing the existence and uniqueness of equilibrium 

solutions in economic models, thereby informing discussions on market efficiency, welfare 

analysis, and economic dynamics. Furthermore, in decision-making under risk and uncertainty, 

convex sets provide a structured approach for representing feasible outcomes or states of nature, 

aiding in portfolio optimization and risk management strategies. 

Overall, the importance of convex sets in economics and game theory lies in their ability to 

provide a rigorous mathematical framework for analyzing complex economic and strategic 

interactions, guiding decision-making processes, and facilitating the understanding of 

equilibrium outcomes and market dynamics. Their versatility and applicability make them 

indispensable tools for researchers, policymakers, and practitioners in these fields. 
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These applications demonstrate the versatility and importance of convex sets in solving a wide 

range of real-world problems across different disciplines. 
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5 
 

ADVANCEMENT IN CONVEX GEOMETRY 
 
 
 
 

 

 
 
 
 
 

5.1 MINKOWSKI THEOREM: 

Minkowski's theorem is a fundamental result in convex geometry named after the German 

mathematician Hermann Minkowski. The theorem provides a deep connection between the 

geometry of convex sets and their properties related to integer points within them. There are 

different versions of Minkowski's theorem, and one of the most famous ones is the Minkowski 

Convex Body Theorem 

5.2 GENERALISED MINKOWSKI : 

 
Let K be a convex body in n-dimensional Euclidean space , and let vol(K) denote its volume 

(in the sense of Lebesgue measure). If vol(K)>  then K contains at least one non-zero integer 

point. 

In other words, if the volume of a convex body is sufficiently large (larger than ), then there 

must be at least one non-zero integer point inside the convex body. This theorem highlights a 

profound connection between convex geometry and number theory. 

This result has various applications in number theory, diophantine approximation, and lattice point 

problems. It establishes a link between geometric properties of convex bodies and the existence of 

integer points within these bodies. 
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Generalized Minkowski Theorem: 

There are also more general versions of Minkowski's theorem that deal with lattices and convex 

sets. One such generalization is: 

Let L be a lattice in , and let K be a convex body that is centrally symmetric (symmetric with 

respect to the origin) and satisfies vol(K)> det (L). Then, K contains at least one lattice point 

other than the origin. 

This version extends the theorem to consider lattices and provides conditions under which a 

convex body containing the origin must also contain a non-zero lattice point. 

Minkowski's theorem and its generalizations have deep implications in various branches of 

mathematics, including convex geometry, number theory, and algebraic geometry. They are 

essential tools for understanding the interplay between the geometry of convex bodies and the 

distribution of lattice points within them. 
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