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CHAPTER -1
INTRODUCTION

Chaos theory deals with complex systems whose behavior is highly sensitive to slight changes

in conditions, so that small alterations can give rise to strikingly great consequences.

Fractal is a pattern that repeats forever, and every part of the Fractal, regardless of how

zoomed in or zoomed out you are, it looks very similar to the whole image.

This study delves into the complex relationship between disorder and structured patterns by
investigating the fascinating interaction between fractal geometry and chaos theory. The
project starts with a thorough analysis of chaos theory, emphasizing the deterministic yet
chaotic systems are characterized by unpredictable dynamics.

Moving seamlessly into the realm of fractal geometry, the report dives into self-replicating
structures with intricate patterns, highlighting concepts like dimension and geometric
intricacies.

In addition, the research highlights how fractals may be used practically in a variety of
domains, including biology, the natural world, the arts, and mathematics, by helping to
understand complicated systems. The goal of the research is to demonstrate the adaptability
of fractal geometries by analyzing various forms and the self-similar structure’s widespread

occurrence in both nature and mathematics.

A pivotal focus lies on the groundbreaking Mandelbrot set and Julia sets, demonstrating how
a subtle change in equations can give rise to distinct fractal geometries. This revelation
underscores the profound interconnectedness between chaos and fractals, as the same
underlying principles generate diverse and visually stunning patterns. In essence, this project
aims to illuminate the intricate dance between chaos and fractal geometry, emphasizing their

inherent interdependence in shaping the complexity of natural and mathematical systems.
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CHAPTER -2
CHAOS THEORY

2.1 INTRODUCTION TO CHAOS THEORY

In 1963, Edward Norton Lorenz presented a paper titled "Deterministic Non periodic Flow,"

laying the foundation for chaos theory.

The term "chaos theory" was coined by mathematician James Gleick in his 1987 book,
"Chaos: Making a New Science." The theory explores complex systems, emphasizing

sensitivity to initial conditions and the unpredictability of dynamic systems.

Edward Lorenz, a meteorologist, conducted the first authentic experiment in chaos theory
in 1960. The butterfly effect, which claims that even tiny changes in a model’s initial
conditions can have a significant impact on its final conditions, is one of the central ideas
of chaos theory. Ironically, he made the accidental discovery of what would eventually be
known as the chaos theory in 1963 while performing computations using erratic
approximations in an attempt to predict the weather. He had first recognized the
phenomenon in 1961. According to Lorenz, chaos theory demonstrated that climate and
weather cannot be anticipated more than a few days in advance, and that this is true even

with the most advanced models and observation systems available today.

The first real experiment in chaos theory was done in 1960 by a meteorologist, Edward
Lorenz. One of the key concepts of chaos theory is the butterfly effect, which states that a
minuscule variation in starting conditions for a model can result in wide variations in the
end conditions. He first observed the phenomenon as early as 1961 and, as a matter of
irony, he discovered by chance what would be called later the chaos theory, in 1963 while
making calculations with uncontrolled approximations aiming at predicting the weather.
Lorenz said chaos theory proved that weather and climate cannot be predicted beyond the
very short term and that, even with today’s state of the art observing system and models,
weather still cannot be predicted even two weeks in advance. This was the best invention

of Chaos theory.

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam



2.2 Butterfly effect Chaos Theory In Fractal Geometry

It is a branch of mathematics and science that studies complex systems that appear to be
random and predictable. It is the study of non- linear, complex. dynamic system. It also
deals with systems that appear chaotic but are actually organized below the surface. It
emerged in the 20th century and has applications in many different fields, including
physics, biology, economics and even weather forecasting. At its core, chaos theory deals
with the concept of "deterministic chaos", where even simple equations can produce very
complex and unpredictable results over time. Chaos theory studies the behavior of
dynamical systems that are sensitive to initial conditions, an effect entirely related to the
butterfly effect. Chaos theory uses tools such as fractals and strange attractors to describe

the behavior ofa chaotic system.

2.2 BUTTERFLY EFFECT

The butterfly effect is a concept in chaos theory that suggests small changes in one part of
a system can have large effects. Invented from the idea that the flapping of a butterfly's
wings in Brazil could set off a chain of events leading to a tornado in Texas, it highlights
the sensitivity to initial conditions of complex systems miscellaneous. This phenomenon
is widely applied in many different fields, including meteorology, economics and physics,
emphasizing the interdependence of elements in dynamic systems. This idea is called the
"butterfly effect” after Lorenz suggested that the flapping of a butterfly's wings could
eventually cause a tornado. And the butterfly effect, also known as “sensitive dependence
on initial conditions,” has a profound corollary: predicting the future is nearly impossible.
The butterfly effect reminds us that every action, no matter how small or seemingly
insignificant, has consequences. It encourages us to be mindful of our choices and actions,
and to recognize their potential to positively and negatively impact our lives and the world

around us.

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam



2.3 Application of Chaos theory Chaos Theory In Fractal Geometry

2.3 APPLICATIONS OF CHAOS THEORY

Chaos theory helps understand complex nonlinear systems such as weather, turbulence,
and fluid behavior. It can model population dynamics, heartbeats, and neural networks. It
can be used to analyze financial markets and predict economic fluctuations. Chaos theory
has improved the understanding and prediction of weather conditions. It is applied to
understanding human behavior, crowd dynamics, and even the spread of information on

social networks.

Another important aspect of chaos theory is the study of fractals, are self-replicating
geometric patterns found in various natural systems. Benoit Mandelbrot's work on fractals
and the development of nonlinear dynamics contributed to the understanding of the

complex and chaotic behavior of natural phenomena.

2.4 CURRENT USAGE OF CHAOS THEORY

Chaos theory is widely applied in many different fields, including meteorology,
economics, biology, and physics. In meteorology, it helps understand and predict complex
weather patterns. In economics, chaos theory is used to model market dynamics. In biology,
it helps to study complex systems such as ecosystems. Additionally, chaos theory has

applications in cryptography, computer science, and even philosophy.

Finance and Economics: Chaos theory has been used in financial modeling to understand
market behavior and improve risk management strategies. It helps analyze the dynamics

of financial markets, where seeminglysmall events can lead to significant fluctuations.

Weather Prediction: Meteorologists use chaos theory to improve weather prediction
models. The atmosphere is a complex system, and chaos theory helps manage the complex

dynamics involved in predicting weather conditions.

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam



2.4 Current usage of chaos theory Chaos Theory In Fractal Geometry

Biology and Ecology: In biology, chaos theory contributes to understanding ecosystem
dynamics and interactions between populations. It helps model complex relationships in

biological systems, thereby contributing to ecological and environmental research.

Physics: Chaos theory continues to play a role in physics, especially in the study of
complex systems such as fluid dynamics and nonlinear oscillations. Understanding chaotic

behavior is important in various branches of physics.

Information Technology: Chaos theory has applications in information technology.
especially in the fields of cryptography and secure communications. Chaotic systems are

used to generate pseudorandom numbers for cryptographic algorithms.

Medicine: In health care, chaos theory has been explored to understand the dynamics of
physiological systems. This can provide insight into conditions with complex and

unpredictable patterns, such as some neurological disorders.

Social Sciences: Chaos theory concepts are applied to understand and model complex
social systems. This may include aspects of sociology, psychology, and political science

where nonlinear interactions produce unpredictable outcomes.

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam



CHAPTER -3
FRACTALS AND FRCTAL GEOMETRY

3.1 FRACTALS

Fractal geometry integrates mathematics and art to show that equations are more than just
a set of numbers, challenging the common misconception that mathematics is a body of

complex, tedious formulas.

The greatest mathematical descriptions of many natural formations, including mountains,
coastlines, and portions of living things, are found in fractals. According to Pickover (an
American author), recursive self-similarity was first discovered by mathematician and
philosopher Gottfried Leibniz in the 17th century. However, Leibniz believed that only
the straight line possessed this property. This is when the mathematics underlying fractals

started to take shape.

The concept of fractals is first introduced by the mathematician Felix Hausdorff in 1918.
A number of significant figures have contributed canonical fractal shapes along the course
of the history of fractals, which spans from mostly theoretical investigations to

contemporary applications in computer graphics.

An indefinitely complicated mathematical shape is called a fractal. A fractal is essentially
an infinitely repeating pattern that seems nearly identical to the entire image no matter
how far you zoom in or out. We live in a world full of fractals in so many different ways.
Numerous fractals exhibit similarities at different scales, as demonstrated by the ever
larger Mandelbrot set. Self-similarity, often referred to as expanding symmetry or
unfolding symmetry, is the display of similar patterns at progressively smaller scales; if
this reproduction is accurate at all scales, as in the Menger sponge (Figure 3.1 a), the shape

is referred to as affine self-similar.
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3.1 Fractals Chaos Theory In Fractal Geometry

Figure3.1a

A geometric shape with intricate structure at arbitrarily small sizes is known as a fractal
in mathematics. Typically, its fractal dimension strictly exceeds the topological
dimension. Unlike the basic geometric shapes of classical, or Euclidean, geometry, such

as the square, circle, sphere, and so on, fractals are unique.

Benoit B. Mandelbrot, a mathematician of Polish descent, is credited with coining the
term "fractal,” which comes from the Latin word fractus, which means "fragmented" or
"broken."

Various researchers have hypothesized that early investigators were unable to fully
appreciate the implications of many of the patterns they had found and could only visualize
the beauty of what they could depict in manual drawings without the help of modern

computer graphics.

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam



3.2 Fractal geometry Chaos Theory In Fractal Geometry

The stunning visuals known as fractals captivate a lot of individuals. Fractal geometry
integrates mathematics and art to show that equations are more than just a set of numbers,
challenging the common misconception that mathematics is a body of complex, tedious

formulas.

3.2 FRACTAL GEOMETRY

Fractal geometry is a workable geometric middle ground between the excessive geometric
order of Euclid and the geometric chaos of general mathematics. Fractal geometry is
conveniently viewed as a language that has proven its value by its uses. Its uses in
various areas of the study of materials and of other areas of engineering are examples of

practical prose.

Computer methods and fractal geometry are complementary because computers are
highly efficient at processing the intricate mathematics required to generate fractals.
Computers enable us to construct and display fractals, create stunning digital art, quickly
compress photos, produce realistic landscapes, and analyze intricate datapatterns. Thus,
computers facilitate our understanding of fractals and our ability to applythem in various

contexts.

Geometric forms or structures known as the fractals show self-similarity under various
magnifications. Stated differently, a fractal enlarges to reveal smaller versions of the
original shape. A structure is said to be self-similar if its patterns remain the same or are
comparable across a range of scales. Fractals show statistical as well as exact self-

similarity.

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam



3.3 Fractal dimension Chaos Theory In Fractal Geometry

3.3 FRACTAL DIMENSION

The fractal dimension of a set is a number that tells how densely the set occupies the
metric space in which it lies. It is invariant under various stretching and squeezing of the
underlying space. Applying traditional method of size measurement to highly irregular

fractals leads to a meaningless result.

Fractals, in contrast to traditional geometric shapes, frequently have non-integer
dimensions. The fractal dimension quantifies a fractal's level of intricacy or ability to
occupy space. The structure is increasingly elaborate and sophisticated the greater the

fractal dimension.

A mathematical idea called "fractal dimension" is used to describe the intricacy and self-
similarity of fractal objects. Fractal dimensions, which can be non-integer values in
contrast to conventional Euclidean dimensions (such as 1D, 2D, and 3D) offer a more
detailed measurement of the complex and asymmetric structures present in fractals. The
idea is essential to comprehending fractal set’s scaling characteristics. Fractal dimensions
have different kinds, showing us the various ways we can describe and measure the

complexity of fractals in simple terms

3.3.1 BOX COUNTING DIMENSION

One common approach for estimating fractal dimensions is the box- counting method. It
means covering a fractal item with boxes of different sizes, then counting the number of
boxes needed to cover the structure fully. The link between the amount and size of the

boxes yields an approximation of the fractal dimension

log(N (E
D = lmog( (E))

E—0 log(é)

D is the fractal dimension, E isthe box size and N (E) is the number of boxes needed.

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam



3.3 Fractal dimension Chaos Theory In Fractal Geometry

3.3.2 HAUSDORFF DIMENSION

One important concept related to fractal dimension is the Hausdorff dimension. Smaller

sets can cover a larger set in multiple ways, according to this broader metric.

The "dimension" or "size" of sets, especially those that are irregular or have a Fractal- like
structure, can be measured mathematically using the Hausdorff dimension. The Hausdorff
dimension offers a more flexible means of characterizing the complexity of sets with
different levels of self-similarity than the conventional Euclidean dimensions (1D, 2D,

and 3D). The German mathematician Felix Hausdorff is honored by the concept’s name.

3.3.3 TOPOLOGICAL DIMENSION

The "dimension" of a topological space is measured by a mathematical concept called
topological dimension. It can be defined for spaces with irregular shapes or those that
might not be embedded in Euclidean space. It is a more general concept of dimension than
the well- known Euclidean dimensions (1D, 2D, 3D). The notion of the topological
dimension has strong relation to ideas in topology, a field of mathematics concerned with

the characteristics of spaces that remain intact under constant deformations.

3.3.4 SIMILARITY DIMENSION

A common usage of the phrase "similarity dimension" is interchangeability with "fractal
dimension" or "dimension of a fractal." It shares many similarities with the box- counting
dimension and other techniques for calculating the dimensionality of intricate structures
that have recurring patterns at various scales. Understanding the idea is essential to
comprehending the geometry of fractals and how they behave when magnified.
Applications for fractal dimension can be found in physics, biology, finance, and computer
graphics, among other domains. It is a term used in physics to characterize the
abnormalities found in natural structures such as clouds and coastlines. It aids in the
modeling of biological systems' complexity in biology, including blood vessels and neural

structures.

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam
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CHAPTER-4

DIFFERENT TYPES OF FRACTAL GEOMETRY

4.1 NON-ITERATIVE FRACTALS

Patterns that result from geometric constructions or mathematical equations without the
need for repeated calculations are known as non-iterative fractals. These fractals create
visually appealing and self-replicating designs by using recursive structures instead of
repetitive techniques to achieve complexity. The Koch Snowflake and the Sierpinski

Triangle are two examples.

4.1.1 THE KOCH SNOWFLAKE

The interesting and self-replicating Koch snowflake, named for the Swedish
mathematician, Helge von Koch, is a fractal that arises from a seemingly straightforward
geometric structure. This fractal has applications in mathematics, art, and education due
to its endless complexity and visual attractiveness. We'll examine the Koch snowflake's
mathematical definition, creation, illustration, historical significance, and uses in this
investigation.

An equilateral triangle is subjected to an iterative procedure that produces the Koch
snowflake. Here's how the construction progresses ( Figure 4.1.1 b) :

1. To begin, construct an equilateral triangle.

2. To create an outward-facing equilateral triangle (that looks like a "bump"), replace the
center third of each side with two segments of equal length.

3. Carry out step three again for everysmaller triangle, indefinitely.
This process is recursive and produces a geometric sequence of triangles at decreasing
sizes, which gives the Koch snowflake its complex and self-similar pattern.
Helge von Koch first described the Koch snowflake in 1904 publication as a part of his
investigation into mathematical functions without derivatives. This invention has its

origins in the early a 1900s. Mathematical conventions were challenged by the idea of an
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4.1 Non-Iterative Fractals Chaos Theory In Fractal Geometry

infinitely long continuous curve enclosing a finite area. Koch laid the groundwork for
further developments in the study of self-replicating patterns by contributing to the

development of fractal geometry.

Figure4.1.1a Figure4.1.1b

Applications and Educational Importance:

The Koch snowflake is useful in a variety of contexts and is not only a mathematical

curiosity.

1. Geometry and Topology: The snowflake serves as an example of ideas in
geometry pertaining to curve characteristics, self-similarity, and geometric constructs.
2. Mathematics Education: The Koch snowflake is a teaching tool that encourages
students to investigate mathematical ideas like fractals and recursion through hands-on
activities. It offers a convenient starting point for exploring the realm of infinite
mathematical structures.

3. Art and Design: The aesthetic appeal of the Koch snowflake serves as a source of
inspiration for artists and designers. Its complex patterns have impacted visual arts,

bridging the gap between artistic expression and mathematics.

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam
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4.1 Non-Iterative Fractals Chaos Theory In Fractal Geometry

4.1.2 THE SIERPINSKI TRIANGLE

An equilateral triangle is used to reveal the origins of the Sierpinski Triangle. Starting
with a single triangle, the method repeatedly joins midpoints and removes the center
triangle to create four congruent equilateral triangles. When this recursive process is
carried out endlessly, it creates a fractal display that looks like a triangle made up of
triangles that keep repeating, displaying the unique Sierpinski Triangle pattern (Figure
4.1.2).

Self-replication and self-similarity play a captivating interplay at the center of the
Sierpinski Triangle. Small triangles form on the sides of the previous iterations with every
repetition, resulting in an infinite pattern that resembles a triangle inside a triangle. The
Sierpinski Triangle's fundamental quality—a fractal's signature—gives it its endless

complexity and captivating aesthetic appeal.

The historical trajectory of the Sierpinski Triangle is inextricably linked to Waclaw
Sierpinski legacy. This Polish mathematician, who was born in 1882, is credited with
helping to formalize and popularize fractal geometry in the early 20th century through his
work, particularly on self- replicating patterns. The foundation for the study of fractals,
including the ongoing fascination with the Sierpinski Triangle, was established by

Sierpinski contributions.

Figure 4.1.2

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam
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4.2 Iterated Fractals Chaos Theory In Fractal Geometry

Applications in Mathematics:

The Sierpinski Triangle is useful in a number of mathematical fields in addition to being
aesthetically pleasing. In topology, geometry, and dynamical systems, it plays function
as a concrete illustration of a mathematical entity with non-integer dimension, a key idea

in fractal geometry.

4.2 ITERATED FRACTALS

Repeated mathematical operations or algorithms produce iterative fractals. Through
repeated computations, these fractals develop into complex, frequently self- replicating
patterns. Classical examples of iterative fractals that demonstrate the captivating
complexity that arises from repeatedly applying mathematical procedures are the Julia set

and the Mandelbrot set.

4.2.1 MANDELBROT SET

The Mandelbrot Set is the height of mathematical fractals; it veers between elegance and
intricacy. Rendered in honor of the genius Benoit B. Mandelbrot, this fractal masterwork
has left a lasting impression on mathematicians, artists, and fans. We will examine the
mathematical complexities of the Mandelbrot Set and the visual symphony it creates

as we explore its essence.

The intricacy of the Mandelbrot Set lies in the visual representation of its boundary. When
graphed, the boundary of the set reveals an infinitely complex and intricate pattern,
showcasing self-similarity at various scales. The set's boundary is characterized by fractal

geometry, displaying similar patterns regardless of the level of magnification.
The visual symphony of the Mandelbrot Set emerges as one explores its detailed

structures, known as fractal zooms. As you zoom into different regions of the set, intricate

and mesmerizing patterns unfold, revealing an infinite complexity of shapes

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam
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4.2 Iterated Fractals Chaos Theory In Fractal Geometry

and structures. The visual appeal of the Mandelbrot Set has captivated not only
mathematicians but also artists and enthusiasts, as it represents a harmonious blend of

mathematical elegance and visual complexity.

In essence, the Mandelbrot Set embodies the concept of self-similarity, where patterns
repeat at different scales. Its exploration not only reveals the beauty of mathematical
structures but also serves as a source of inspiration for those interested in the intersection

of mathematics and art.

How is the Mandelbrot set created?

To create the Mandelbrot set we have to pick a point (C) on the complex plane. The
complex number corresponding with this point has the form: C=a+ib After calculating the

value of the previous expression:

Lol 5 C

Using zero as the value of Zg, we obtain C as the result.

The next step consists of assigning the result to Z; and repeating the calculation. Then we

have to assign the value to Z> and repeat the process again and again.

i.e. Zn :Zn_l 2+ C

and assume Zo=0

So the iteration becomes
Z1=Zo*+c

ZQZZIZ—FC

23=Z,*+C

Zy= 232 +C

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam
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4.2 Iterated Fractals Chaos Theory In Fractal Geometry

One way to understand this process is as the "migration" of starting point C across the
plane. When we iterate the function multiple times, what happens to the point? Will it stay
close to the source or will it move away, always becoming farther away from the source?
In the first scenario, we state that point C (one of the white points in the image(Figure
4.2.1.b)) 1s a member of the Mandelbrot set; in the other scenarios, we state that point C
goes to infinity and give it a color based on how quickly the point "escapes” from the

origin.

Consider the point c=-1.5+0.51

Z,=-1.5+0.51
Z,=0.75-1i
73=-0.9375-21

Z4=-5.617187-7.251

Magnitude of Z4 is greater than absolute value of 2 or 2i by 3" iteration it means it escapes
to infinity.

Therefore c=-1.5 +0.511s outside Mandelbrot set

Let’s check this using python

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam
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4.2 Iterated Fractals Chaos Theory In Fractal Geometry

1 import numpy as np
2 import matplotlib.pyplot &5 plt

3

4~ gaf
5

6~

31
32
13
34
35
36
37

mandelbrot(c, max_iter):
z=8
for i in range(max_iter):
Z = %) 4 ¢
if abs(z) » 2:
return i
return max_iter

draw_mandelbrot(x min, x_max, y_min, y_max, width, height, max_iter, test_point):
image = np.zeros((height, width))

for % in range(width):
for y in range(heignt):
real = x_min + (x / width) * (x_max - x_min)
imag = y min + (y / height) * (v_max - y_min)
c = complex(real, imag)

iteration = mandelbrot{c, max_iter)
normalized_iteration = iteration / max_iter
image[y, x] = normalized_iteration

# Highlight the test point

test_point_real = (test_point.real - x min) / (x._max - x_min) * width

test_point_imag = (test_point.imag - y_min) / (y_max - y min) * height
plt.scatter(test _point real, test point imag, color='red', marker='x‘, label='c = -1.5 + 2.51")

plt.imshow(image, cmap='hot', extent=(x_min, x max, y_min, y max))
plt.colorbar()

plt.title(f'Mandelbrot Set (Iterations: {max_iter})')
plt.xlabel('Re"’)

plt.ylapel('Im')

plt.legend()

plt.show()

38 & Set your desired parameters
39 x min, x_ max = -2, 2

42 y min, ymax = -2, 2

41 width, height = 8@e, 829

42 max_iter = 58

43 test_point = complex(-1.5, 8.5)

45 # (Call the function to draw the Mandelbrot set
46 draw_mandelbrot(x_min, x_max, y_min, y max, width, neight, max_iter, test_point)|

Figure4.2.1a

Department of Mathematics St. Teresa’s College (Autonomous), Ernakulam
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4.2 Iterated Fractals Chaos Theory In Fractal Geometry

Mandelbrot Set (lterations: 50)
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Figure4.2.1b
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4.2 Iterated Fractals Chaos Theory In Fractal Geometry

IfZo=0and c=0.75+0.11

Zo=0

Z,=0.5625-0.151
Z5>=0.174609375-0.45656251
Z5=0.496962202+0.103141561
Z4=0.072033202-0.8706800981

The magnitude of z is still in the boundary

Therefore we can conclude that Zo=0 with ¢=0.5 is in the Mandelbrot set

Let’s verify this using python

import numpy as np
import matplotlib.pyplot as plt

# Function to check if @ point is in the Mandelbrot set
g=f mandelbrot(c, max_iter):
=9
- for n in renge(max_iter):
- if abs(z) » 2:
reéturn n
1@ 1 ="+ ¢
11 return max_iter

D 0 AN b B
a

13 # Define the properties of the image
14 width, neight = 802, 80

15 amin, xmex = -2, 1

16 ymin, ymex = -1.5, 1.5

17 max_iter = 108

19 & Specific point for ¢
28 «c = complex(-8.75, @.1)

22 # Generate the Mandelbrot zat
23 image = np.zeros((width, height))

24

25~ for x in range(width):

26~ for y in range{height):

27 real = xmin - x * (xmax - xmin) / (width - 1)
28 imag = ymin + v * (ymax - ymin) / (height - 1)
29 z = complex{real, imag)

38 color = mandelbrot(z + c, max iter)

31 image(x, v] = color

32

33 & Display the Mandelbrot set

34 plt.imshow(image, cmap="virigis’', extent=(xmin, xmax, ymin, ymax))
35 plt.colorbar()

36 plt.title('Mandelbrot Set with ¢ = -8.75 = 2.1i")

37 plt.xlabel('Rs")

38 pit.ylabel('Im")

39  plt.show()

Figure4.2.1c¢
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4.2 Iterated Fractals Chaos Theory In Fractal Geometry

Mandelbrot Set with c = -0.75 + 0.1i
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Figure4.2.1d

4.2.2 JULIA SET

The Mandelbrot set is strictly related to Julia sets. They are generated using the same
iterative function as the Mandelbrot set. The application of this formula is the only thing
that differs. We iterate the algorithm for every point C in the complex plane, always
beginning with Z,=0, to create a picture of the Mandelbrot set. In order to create an image
of a Julia set, the value of fluctuates during the generation process, but C must remain
constant. The shape of the Julia set is determined by the value of C; that is to say, every

point on the complex plane corresponds to a specific Julia set.
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4.2 Iterated Fractals Chaos Theory In Fractal Geometry

Figure4.2.2 a

How is a Julia set created?
We have to pick a point C on the complex plane. The following algorithm

determines whether a point on complex plane Z belongs to the Julia set associated with
C. To see if Z belongs to the set, we have to iterate the function Z,= Z¢+C using Zo=Z.
As we mentioned the iterative function of Julia set is same as Mandelbrot set

i.e., Zn :Zn_} 2+ Cl

What happens to the initial point Z when the formula is iterated? Will it remain near to the
origin or will it go away from it, increasing its distance from the origin without limit? In
the first case, it belongs to the Julia set; otherwise it goes to infinity and we assign a color
to Z depending on the speed the point "escapes" from the origin. To produce an image of
the whole Julia set associated with C, we must repeat this process for all the points Z
whose coordinates are included in this range:

2<a<2 , -15<y<l.5
Julia Sets unveil a mosaic of diversity, with each c¢ value birthing a distinct fractal

narrative. The tapestry of shapes and patterns becomes an artist's palette, offering a
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4.2 Iterated Fractals Chaos Theory In Fractal Geometry

spectrum of spirals, dendritic structures, and intricate forms dictated by the chosen C

value.This variety propels Julia Sets into a realm of infinite mathematical possibilities.

Julia Sets, with their profound mathematical significance, permeate diverse fields, inviting
exploration and innovation. In the scientific domain, Julia Sets contribute to the study of
complex dynamics, bifurcation theory, and chaos theory. They offer a lens into the
behavior of complex functions and the emergence of chaos in nonlinear systems,
illuminating the intricate dance of mathematical phenomena. The allure of Julia Sets has
seized the imaginations of artists and digital creators. Fractal art, sculpted by algorithms
inspired by Julia Sets, transcends the boundaries of the ordinary. The resultant artworks
boast intricate patterns, seamlessly merging the beauty of mathematics with creative
expression.

Let take Zo= 0.355 +0.355i

C:-0.7+0.27i

Z1=Zy*+C
=-0.56085+0.98058i

Zr=7+C
=-0.7631+1.58950i

Z3: 222 +C

=0.17447+4.399i
Zy=- 18.85006+9.9726i

Check the magnitude of Zs which is greater than the limit. Therefore it is not in the set.

..Let’s verify it using python
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= P » v < ~

>  mainpy inflammation-0i.csv
1 dmpart numpy

2 import matplotiib.pyplot

3

P

5 dmport numpy as np

&

3

Define the Julia et iteration function
ef julia_set iterstion(z, c, max_iter):

Chaos Theory In Fractal Geometry

B Remix -]

+ & [ | Powered by [Ptrinket o @
The point z = (8.35548.355j) is not in the July
set for © = (8.748.273).

Ise # If the orbit Becomes unbounded, it's:not in the Julis =
the orbit remains bounded, 1t's in the Julis set

29 & Check If z is in the Julia sat for the chosen C

21 is_in_julia_set = julia_seti_iteration(z, ¢, max_iter)

22

23 prict{f"The point z = {2} {45 iFf is_in julis <=t else ‘it pot*} in'the Julis sei

Next take another point,
Zo= 0.1+

C=0+0i

Z,=-0.99 +0.21
Z>=-10.58 - 0.3961
Z3=-0.195 - 0.62i

Z,=-0.244-0.0511

Figure 4.2.2 b

Check the magnitude of Z4;~9.6 since it in the limit. Therefore, it is in Julia set associated

with these parameters. It satisfies the condition.

The iteration seems to oscillate, i.e. it doesn't escape from the boundary so it is in the set

Let’s check it using python
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<

)* | T £ v

mainpy inflammation-otcsv +r

import numpy
import matpleotlib.pyplot

import numpy 2s np

# Define the Julds set iterstion functioa
gef julla_set_iterstion(z;, ¢, mex iter):
Ffor i in range{max_iter):
L =2**F+c
if abs(z) » 2:
return False # If the orbit becomes unbounded, it's not in the Julis
raturn True # If the orbit remains bounded, it's in the Julia sst
# Chosen values
z = 1+87
[
may_iter = 188

# Check iFf z'is in the Julda set fur the chosen ¢
is in julis set = julia_set iteration(z, c, max iter)

print(F "The point z = {2} {'is" iFf is_in julis set else "is not'} in the Julia sei

Figure4.2.2 ¢
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B Remix L]

Powered by  Ptrinket
The point z = (14@j) is in the Julia sat for c
ej.
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CHAPTER-5
APPLICATIONS OF FRACTALS

Patterns of chaos can be seen everywhere, from spiral galaxies and seashells to the
composition of human lungs. Fractals are patterns made of self-similar patterns whose
complexity increases with magnification. They are created from chaotic equations. A
nearly similar reduced-size duplicate of the entire fractal pattern is obtained by splitting
it into smaller pieces. Fractals are mathematically beautiful because they may produce
infinite complexity from relatively simple equations. Random outputs produce stunning
patterns that are both distinct and recognized when fractal-generating equations are
iterated. We have compiled a list of some of the most fascinating natural fractals examples

that we could discover on Earth.

5.1 FRACTALS IN TREES

Figure5.1a
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5.2 Fractals in Animal bodies Chaos Theory In Fractal Geometry

The way a tree grows its limbs produces fractals, which are visible in the
branches. The Fractal originates from the main trunk of the tree, and every
branch that branches out of it has its own branches that grow and have branches
of their own thereafter. The branches will gradually thin out to form twigs, and
these twigs will eventually develop into larger branches and produce twigsof
their own. Tree branches form an “infinite” pattern as a result of this cycle.
Every branch of the tree resembles a scaled-down representation of the entire

form.

5.2 FRACTALS IN ANIMAL BODIES

Figure 5.2 a Figure 5.2 b

Fractal-like patterns can be seen in the respiratory and circulatory systems, especially in
the complex heart and lung components. The blood artery branching patterns in the
cardiovascular system are similar to fractals. The major arteries form the base of the
circulatory network, which branches out into arterioles, capillaries, and smaller arteries to

form a pattern that repeats and resembles itself. The respiratory system has
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5.3 Fractals in Snowflakes Chaos Theory In Fractal Geometry

fractal features as well. The trachea serves as the main trunk of the lungs’ branching
bronchial tree, which gradually divides into smaller bronchi and bronchioles. This
structure is reminiscent of a fractal. For effective gas exchange, this branching design
maximizes surface area. These biological systems’ fractals show how nature has
optimized these systems for efficiency and functioning, enabling the exchange of gasesin

the lungs and the distribution of nutrients and oxygen throughout the body.

5.3 FRACTALS IN SNOWFLAKES

Figure 5.3

Fractal-like patterns can be seen in the respiratory and circulatory systems, especially in
the complex heart and lung components. The blood artery branching patterns in the
cardiovascular system are similar to fractals. The major arteries form the base of the
circulatory network, which branches out into arterioles, capillaries, and smaller arteries to
forma pattern that repeats and resembles itself. The respiratory system has fractal features
as well. The trachea serves as the main trunk of the lungs” branching bronchial tree, which
gradually divides into smaller bronchi and bronchioles. This structure is reminiscent of a
fractal. For effective gas exchange, this branching design maximizes surface area. These

biological systems” fractals show how nature has
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5.4 Fractal Lightning and Electricity Chaos Theory In Fractal Geometry

optimized these systems for efficiency and functioning, enabling the exchange of gases

in the lungs and the distribution of nutrients and oxygen throughout the body.

5.4 FRACTAL LIGHTNING AND ELECTRICITY

Figure5.4 a Figure 5.4 b

The fascinating fractal patterns found in nature are exhibited by lightning storms. The
contact between electricity and air creates superheating, which modifies the air’s
conductivity and promotes fragmentation. Complex fractals are created as a result of this
iterative process. Remarkably, when a lightning strike image is inverted, it bears a strong
resemblance to a tree, highlighting the common fractal nature of these phenomena. Fractals
are abundant and beautiful in nature; the complex branching structures found in both

lightning and trees are prime examples.

S.5SFRACTAL IN PLANTS AND LEAVES

Figure 5.5 a Figure5.5b
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5.5 Fractal in Plants and Leaves Chaos Theory In Fractal Geometry

Foods like salad, pineapple, and broccoli reflect fascinating Fractals in their
cellular structures, revealing the exquisite beauty of nature in ways that are truly
astounding. Inside these fascinating patterns, internal networks in both plants and
animals distribute nutrients. A striking example of these phenomena is found in
romanesco broccoli, which has spiraling spires that resemble a Fractal Snowflake.
Another example of nature’s fractal design is ferns, which have a complicated
structure that is repeated repeatedly. Plant Fractals are more than just nourishing
cells; they also help the passage of vital substances through plants in a seamless
manner, weaving a fascinating web of interrelating life into each leaf and

branches.

5.6 FRACTALS IN CLOUDS

Figure 5.6

Clouds also display characteristics of Fractals. The turbulence that is found within the

atmosphere has an interesting impact in the way water particles interact with each other.

Turbulence is Fractal in nature and therefore has a direct impact on the formation and
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5.7 Fractal in Math Chaos Theory In Fractal Geometry

visual look of clouds. The amount of condensation, ice crystals, and precipitation expelled
from the clouds all impacts the state of the cloud and the system’s structure and therefore

the turbulence.
5.7 FRACTALS IN MATH

We will explore Fractals as they are represented by math formulas, the concept of

dimensionality and how Fractals exhibit Fractional Dimensions, as well as how some of

the most iconic Fractal shapes were created using math.

Figure 5.7 a

Let’s take a quick look at some popular Fractal representations that come from
mathematical formulas before delving deeper into the subject of formulas. Concept
understanding will depend on knowing how these forms appear and how they might differ

from natural fractals.

No matter what scale you look at, the Fractal shapes in this image are self-similar and
identical, just like fractals in nature. The solid black square and triangles make this the

easiest to see.

¢ A Sierpinski Gasket is the name given to the solid triangle. You start with a

single triangle to make a Sierpinski Gasket, and with each iteration, you begin
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5.7 Fractal in Math Chaos Theory In Fractal Geometry

to eliminate the triangle’s center. As you continue, you’ll see that an increasing

amount of the triangle is left unfilled. Observe also how every newly generated

triangle resembles the previous one and the shape in its entirety.

Figure5.7b

e The von Koch Snowflake shape is another excellent illustration of a fractal pattern.
In contrast to the Sierpinski Gasket, the von Koch Snowflake adopts a different
strategy. The von Koch Snowflake adds triangular material rather than deleting
triangle material. Starting with a single triangle, a proportionate triangle is added
to each side of the triangle at each iteration. After then, another triangle is added
to each of those sides, and the pattern continues indefinitely. After a few rounds,
the self-similarity between the borders of the pattern may be seen when you zoom

in on a specific area of it.

P and
>4
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CHAPTER-

CHAOS THEORY IN FRACTAL GEOMETRY

So far we have seen what chaos theory and fractal geometry is, now let’s check howchaos

theory influences fractal geometry.

Consider that the Mandelbrot and Julia sets, two non-iterative sets in fractal geometry,
exemplify chaos theory’s sensitivity to initial conditions. In the Mandelbrot set, iterations
of the complex equation Zy =Z n.1 > + ¢, Zo =0, determine the set’s boundary. Small
changesin the initial value of “c” can lead to vastly different visual patterns within the
Mandelbrotset. The Julia set, on the other hand, results from iterating a similar equation
Zn=Zu1" + ¢, Zo=Z, with the constant determining the specific Julia set. The fascinating
aspect lies in how minute alterations in these constants generate entirely distinct fractal
structures. Here, both sets are sensitive to initial conditions, and a small change in the

initial condition leads to two different sets, showcasing their relation to chaos theory.

Expanding beyond the Mandelbrot and Julia sets, chaos theory also influences iterative
structures like Koch snowflakes and Sierpinski triangles. In the case of the Koch
snowflake, the recursive application of a simple geometric transformation results in a self-
replicating pattern. Small changes in the initial shape or parameters can lead to complex,
unpredictable variations. Similarly, the iterative construction of the Sierpinski triangle
demonstrates chaos-like behavior, as each iteration introduces intricate details influenced
by the initial conditions. Small changes in the initial conditions, such as altering the
starting shapes or tweaking the iteration rules, can have a profound impact on the final
fractal pattern. This sensitivity to initial conditions is a hallmark of chaotic systems, and
it’s part of what makes the fractals exhibit complex and unpredictable behavior, aligning

them with the principles of chaos theory.
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CHAPTER-

CONCLUSION

This project delves into the intricate world of chaos theory within fractal geometries,
spanning five main chapters. It explores the essence of chaos, unraveling its implications
through the butterfly effect and its diverse applications. Additionally, it venture into the
historical backdrop of chaos theory, shedding light on its evolution. Moving on to fractals,
we dissect their nature, discussing fractal geometries and their wide-ranging applications.
Furthermore, it navigates through iterative sets like the Mandelbrot and Julia sets,
elucidating their significance in generating complex fractal structures. This critical chapter
on findings illuminates the pivotal role of initial conditions in shaping fractal outcomes.
By demonstrating how minute changes in these conditions yield vastly different fractals—
exemplified by the Mandelbrot and Julia sets—it underscore the sensitivity of chaotic
systems to initial parameters. Moreover, it showcases the transformative journey from a
simple geometric form, like a triangle, to intricate fractal entities like the Sierpinski
triangle and Koch snowflake. In conclusion, this project unveils the profound interplay
between chaos theory and fractal geometries, emphasizing their symbiotic relationship in
elucidating complex phenomena. Through meticulous exploration and insightful findings,
it unveils the inherent beauty and unpredictability inherent in chaotic systems, forever

altering our perception of order and randomness in the natural world.
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