TB165370E

Reg.	No.:	•••••

Name :

Maximum marks: 80

B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2018 (2016 Admission Regular & 2015 Admission Supplementary) SEMESTER V - CORE COURSE (MATHEMATICS) MT5B05B - REAL ANALYSIS I

Time: Three Hours

PART A

I. Answer all questions. Each one carries 1 mark.

- 1. Consider the set $\{x: x \text{ is rational and } 0 \le x < \pi\}$. Explain why this set necessarily has a supremum?
- 2. Find the infimum of the set $\left\{1 \frac{1}{n^2} : n \in \mathbb{N}\right\}$.
- 3. Give an example of a bounded set which is perfect.
- 4. What is the nature of convergence of the sesquence $\{n + (-1)^n n\}; n \in \mathbb{N}$.
- 5. Define the distance between two nun-empty subsets A and B of a metric space (X, d).
- 6. Prove that every finite subset of a metric space is closed.

(6×1=6)

PART B

II. Answer any seven questions. Each one carries 2 marks.

- 7. Let m be the infimum of a set S and 'a' be a real number greater than m. Can 'a' be a lower bound of S. Why?
- 8. Give an examples of the sets:
 - i) Finite bounded set.
 - ii) Infinite bounded set.
- 9. Show that the set $A = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \dots, \frac{1}{n}\}$ is neither closed nor dense in itself.
- 10. If M and N are neighbourhoods of a point x, then show that $M \cap N$ is also a neighbourhood of x.
- 11. Prove that $\mathbb{N} \times \mathbb{N}$ is countable.
- 12. Define monotonic sequence. Give an example.
- 13. Find limit inferior and limit superior of the sequence $\{a_n\}$; where $a_n = \sin \frac{n\pi}{3}$; $n \in \mathbb{N}$.
- 14. Give examples of sequences:
 - i) A sequence havin limit whose range set doesn't have a limit point.
 - ii) A sequence havin limit whose range set has a limit point.
- 15. Show that the subset A = [0,1) of the metric space (X, d) where X = [0,2) and d is the usual metric is an open set.
- 16. How many types of adherent points are there? Which are they?.

(7×2=14)

PART C

III. Answer any five questions. Each one carries 6 marks.

- 17. State and prove Archimedean property of real numbers.
- 18. State order completeness in \mathbb{R} . Prove that the set of natural numbers is order complete.

- 19. Prove that the derived set of a set is closed.
- 20. Prove that a countable union of countable sets is countable.
- 21. Show that:

i)
$$\lim_{n\to\infty} a^{\frac{1}{n}} = 1$$
, if $a > 0$.

ii)
$$\lim_{n\to\infty} n^{\frac{1}{n}} = 1$$

- 22. State and prove Sandwich theorem.
- 23. In any metric space (X, d), prove that:
 - i) The intersection of an arbitrary family of closed sets is closed.
 - ii) The union of a finite number of closed sets is closed.
- 24. Let (X, d) be any metric space and A be any non-empty subset of X, then show that $x \in \overline{A}$ if and only if there exists a sequence $\{x_n\}$ in A such that $x_n \to x$ as $n \to \infty$.

(5×6=30)

PART D

IV. Answer any two questions. Each one carries 15 marks.

- 25. Prove the equivalence of Dedekind's form of completeness property and Order completeness property in \mathbb{R} .
- 26.
- i) State and prove Bolzanno Weirstrass theorem for sets.
- ii) Define a countable set. Prove that the set of real numbers is uncountable.
- 27.
- i) State and Prove Cauchy's first theorem on limits.
- ii) State and prove Cesaro's theorem.
- 28.

i) Prove that every non-empty open set on the real line is the union of a countable collection of pointwise disjoint open intervals.

ii) Let (X, d) be a metric space and $Y \subseteq X$, then show that a subset A of Y is open in (y, d_Y) if and only if there exists a set G open in (X, d) such that $A = G \cap Y$.

(2×15=30)