TM242516I

Reg. No	:
Name :	

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 2023 ADMISSIONS REGULAR SEMESTER II - CORE COURSE CHEMISTRY CH2C05TM20 - Coordination Chemistry

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Give four points for the theoretical failure of Crystal Field Theory.
- 2. Define Nephelauxetic effect. Outline its significance in coordination chemistry.
- 3. Distinguish between Neil temperature and Curie temperature.
- 4. Nephelauxetic ratio can be used to understand the extend of covalent bonding in metal complexes. Explain.
- 5. d-d transitions in centrosymmetric complexes are forbidden by the Laporte selection rule, yet we see them. Examine the reason.
- 6. Substitution reaction in square planar complexes is stereo retentive. Explain.
- 7. Predict the complex whose water exchange reaction proceeds faster: [Mg(H₂O)₆]²⁺ or [Al(H₂O)₆]³⁺.
- 8. Discuss the type of isomerism shown by the following complexes a) [Co(en)₃] b) [Co(NH₃)₅(SCN)]²⁺
- 9. Explain the crystal structure of Prussian blue.
- 10. Classify lanthanide elements. Absorption bands are sharp for lanthanides. Justify.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Jahn- Teller effect is more prominent in octahedral complexes. Identify the reason. Discuss the above observation with suitable examples.
- 12. Compare the splitting of d orbitals in octahedral and tetrahedral ligand fields. Explain the lesser value of delta in tetrahedral complexes.

13. The spectra of [Cr(en)₂F₂]⁺ is given below. Explain the appearance of the 5 bands.

- 14. Explain briefly about Orgel diagrams. List out the advantages of Tanabe Sugano diagrams over Orgel diagrams.
- 15. Explain the mechanism of reduction of Co(III) in [Co(NH₃)₅Cl]²⁺ by Cr(II) in [Cr(H₂O)₆]²⁺.
- 16. Explain the theories of trans effect.
- 17. Actinides form a wide range of complexes in different oxidation states. Explain with suitable examples.
- 18. Explain the resolution of the racemic mixture d & I-cis[Co(en)₃]Cl₃.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Outline Molecular Orbital Theory. Explain MO energy level diagrams of octahedral and tetrahedral complexes without pi bonding.
- 20. a) Draw the Orgel diagram of hexaaquatitanium (II). b) Explain the differences between Orgel diagram and Tanabe-Sugano diagrams. c) Discuss the effects of spin orbit coupling and vibronic coupling on the selection rules of electronic transition.
- 21. Explain the inner sphere mechanism of electron transfer reactions in metal complexes.
- 22. a) Discuss linkage isomerism in coordination complexes. Explain the electronic and steric factors affecting linkage isomerism. b) Explain the factors that mitigate against the formation of lanthanide complexes

