8.4

TM242250F

Reg. No	
Name -	

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 2023 ADMISSIONS REGULAR SEMESTER II - CORE COURSE CHEMISTRY CH2C08TM20 - Molecular Spectroscopy

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- Sketch the vibrational modes of H₂O and CO₂. Which of them are IR active?
- 2. Give a brief account of polarized and depolarized Raman lines.
- 3. Explain briefly the Lamb Dip Spectrum in molecular spectroscopy.
- 4. Write a note on Resonance fluorescence.
- 5. Discuss the different fundamental vibrations for molecules in IR spectroscopy.
- 6. Define chemical shift.
- 7. Discuss why nuclear magnetic resonances of ¹³C nuclei are difficult to observe than those of ¹H.
- 8. Differentiate between T₁ and T₂ relaxation mechanisms.
- i)Discuss briefly on Quadrupole nucleus ii) List the important criteria for observing zero field NMR Spectroscopy.
- 10. Write a note on Electric Quadrupole moment (eQ). Quadrupole moment is a measure of the departure from spherical symmetry of the nuclear charge. Comment.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Explain the concept of Fermi resonance in vibrational spectroscopy.
- 12. Excitation of a sample by irradiation with 435.7 nm mercury line yields the first Stokes line at 445.1 nm.

 Calculate the Raman shift in cm⁻¹ and the wavelength in nm at which the first anti-Stokes line would appear in the above Raman Spectrum.
- 13. Explain the influence of rotation on the vibration spectra of polyatomic linear molecule.
- 14. Write a note on stark effect and its applications.
- 15. Compare the NMR signals obtained at low and high field strengths.
- 16. Describe the general rule for predicting whether a nucleus is NMR active.
- 17. Discuss the origin of spin-spin splitting in NMR spectroscopy.
- 18. Write a note on Nuclear Quadrupole splitting in Mossbauer Spectroscopy.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Explain the electronic spectra of polyatomic molecules by a) Chemical analysis of the molecule and b) Change in shape on excitation.
- 20. Discuss the vibrational coarse structure of electronic spectra.
- 21. Discuss the instrumentation of CW and pulsed NMR spectrometers.
- 22. Elaborate on the principle and applications of Nuclear Quadruple resonance spectroscopy.