5-4

TM242437	'N
----------	----

Reg. N	o :	•••••	•••••	•••••	•••••	•••
Name	:		******	•••••		

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024

2023 ADMISSIONS REGULAR

SEMESTER II - CORE COURSE CHEMISTRY

CH2C07TM20 - Chemical Bonding and Computational Chemistry

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Discuss about distortions in octahedral molecule.
- 2. Write a note on transition moment integral.
- 3. Discuss orbital selection rule.
- 4. Account on the HFSCF method.
- 5. State and explain Shell model.
- 6. Sketch and explain the MO diagram of NO.
- 7. Discuss Schrodinger equation for molecules.
- 8. Schematically explain Saddle point, local minima and global minima.
- 9. Explain HF limit.
- 10. Describe briefly the semiempirical method used in computational chemistry.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Explain in detail electronic transitions in C_{4h}
- 12. Discuss in detail electronic transitions in C_{4v}.
- 13. Give an account on Perturbation method.
- 14. Account on the first order correction to energy and wave function in time-independent perturbation method.
- 15. Discuss the MO treatment of H₂ molecule.
- 16. With the aid of suitable examples discuss the MO treatment of homonuclear diatomic molecules.
- 17. Discuss the advantages and disadvantages of ab initio method.
- 18. Write an input file for geometry optimization of water at HF/6-31g(dp) level of theory in GAMESS.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Describe in detail electronic transitions in formaldehyde using group theory.
- 20. Discuss (i) Hellmann-Feynman theorem with its applications. (ii) Gaussian type orbitals.
- 21. Discuss Valence Bond theory as applicable to H₂ molecule.
- 22. Discuss the Density Functional Theory.

