\qquad

B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2018

(2016 Admission Regular \& 2015 Admission Supplementary)
SEMESTER V- CORE COURSE (COMPUTER APPLICATIONS)
CAM5B06TB - DIFFERENTIAL EQUATIONS AND FUZZY MATHEMATICS
Time: Three Hours
Maximum Marks: 80

PART A

I. Answer all questions. Each question carries 1 mark.

1. Write the general form of Bernoulli Equation.
2. Define homogeneous differential equations
3. Define a UC function
4. Define linear differential equation.
5. Define Fuzzy set.
6. Define level set

PART B

II. Anwer any seven of the following. Each question carries $\mathbf{2}$ marks.
7. Solve $\frac{d y}{d x}+\mathrm{y}=\mathrm{xy}^{3}$
8. Find the orthogonal trajectories of the curve. $x y=c$
9. Solve $\frac{d^{2} y}{d x^{2}}+y=0$
10. Solve $y^{\prime \prime}+3 y^{\prime}-10 y=e^{2 x}$
11. Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0$
12. Eliminate arbitrary constants from the equation $a x^{2}+b y^{2}+z^{2}=1$
13. The direction cosines of the tangent at the point (x, y, z) to the conic $a x^{2}+b y^{2}+c z^{2}=1, x$ $+y+z=1$ are proportional to (by $-c z, c z-a x, a x-b y$).
14. If u is a function of x, y and z which satisfies the partial differential equation $(\mathrm{y}-\mathrm{z}) \frac{\partial u}{\partial x}+(\mathrm{z}-\mathrm{x}) \frac{\partial u}{\partial y}+(\mathrm{x}-\mathrm{y}) \frac{\partial u}{\partial z}=0$. Show that u contains x, y and z only in combinations $x+y+z$ and $x^{2}+y^{2}+z^{2}$
15. Prove that $\alpha_{\bar{A}}=\overline{(1-\alpha)_{A}^{+}}$for every $\alpha, \beta \in[0,1]$ and $\mathrm{A}, \mathrm{B} \in F(X)$
16. Let $\mathrm{A}, \mathrm{B} \in F(X)$. Then, for all $\propto \in[0,1]$, Prove that $\mathrm{A} \subseteq \mathrm{B}$ iff $\propto_{A} \subseteq \propto_{B}$.

PART C

III. Answer any five of the following. Each question carries $\mathbf{6}$ marks.
17. Solve the initial value problem that consists of the differential equation

$$
\left(\mathrm{x}^{2}+1\right) \frac{d y}{d x}+4 \mathrm{xy}=\mathrm{x}, \text { where } \mathrm{y}(2)=1
$$

18. Solve $(x+2 y+3) d x+(2 x+4 y-1) d y=0$.
19. Find the general solution of the differential equation $\mathrm{x}^{3} \frac{d^{3} y}{d x^{3}}-4 \mathrm{x}^{2} \frac{d^{2} y}{d x^{2}}+8 \mathrm{x} \frac{d y}{d x}-8 \mathrm{y}=\ln \mathrm{x}$.
20. State and prove second decomposition theorem
21. Using variation of parameters $\frac{d^{2} y}{d x^{2}}+y=\tan x$
22. Prove that the parametric equations of a surface are not always unique.
23. Find the integral curves of the equation $\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}$
24. State and prove first decomposition theorem.

PART D

IV. Answer any two of the following. Each question carries $\mathbf{1 5}$ marks.
25. Solve $\frac{d y}{d x}+\mathrm{y}=\mathrm{xy}^{3}$.
26. Find the solution of the Solve $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=e^{x}$ using variation of parameters.
27. (a) Find the integral curves of the integral curves of the equation $\frac{a d x}{(b-c) y z}=\frac{b d y}{(c-a) z x}=$ $\frac{c d z}{(a-b) x y}$
(b) Eliminate arbitrary function f from the equation $f\left(x^{2}+y^{2}+z^{2}, z^{2}-2 x y\right)=0$.
28. a) Prove that a fuzzy set A on R is convex iff $A\left[\lambda x_{1}+(1-\lambda) x_{2}\right] \geq \min \left[A\left(x_{1}\right), A\left(x_{2}\right)\right]$ for every $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}$ and $\lambda \in[0,1]$.
b)Let $\mathrm{A}, \mathrm{B} \in F(X)$.then the following properties hold for all $\propto, \beta \in[0,1]$:
(i) $\propto+_{A} \subseteq \propto_{A}$;
(ii) $\alpha \leq \beta$ implies $\alpha_{A} \supseteq \beta_{A}$ and $\alpha+_{A} \supseteq \beta+_{A}$
(iii) $\propto_{(A \cap B)}=\alpha_{A} \cap \alpha_{B}$ and $\alpha_{(A \cup B)}=\alpha_{A} \cup \alpha_{B}$
(iv) $\propto+_{(A \cap B)}=\propto+_{A} \cap \beta+_{A}$ and $\propto+_{(A \cup B)}=\alpha+_{A} \cup \beta+_{A}$

