(P.T.O)

Reg. No.: Name :

B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2018 (2016 Admission Regular & 2015 Admission Supplementary) **SEMESTER V- CORE COURSE (COMPUTER APPLICATIONS) CAM5B06TB - DIFFERENTIAL EQUATIONS AND FUZZY MATHEMATICS**

Time: Three Hours

PART A

I. Answer all questions. Each question carries 1 mark.

- Write the general form of Bernoulli Equation. 1.
- 2. Define homogeneous differential equations
- 3. Define a UC function
- 4. Define linear differential equation.
- 5. Define Fuzzy set.
- 6. Define level set

$(6 \times 1 = 6)$

PART B

Π. Anwer any seven of the following. Each question carries 2 marks.

- 7. Solve $\frac{dy}{dx} + y = xy^3$
- 8. Find the orthogonal trajectories of the curve. xy = c
- 9. Solve $\frac{d^2y}{dx^2} + y = 0$ 10. Solve $y'' + 3y' 10y = e^{2x}$
- 11. Solve $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 0$
- 12. Eliminate arbitrary constants from the equation $ax^2+by^2+z^2=1$
- 13. The direction cosines of the tangent at the point (x,y,z) to the conic $ax^2 + by^2 + cz^2 = 1$, x + y + z = 1 are proportional to (by - cz, cz - ax, ax - by).
- 14. If u is a function of x, y and z which satisfies the partial differential equation

$$(y - z)\frac{\partial u}{\partial x} + (z - x)\frac{\partial u}{\partial y} + (x - y)\frac{\partial u}{\partial z} = 0$$
. Show that u contains x, y and z only in combinations $x + y + z$ and $x^2 + y^2 + z^2$

15. Prove that
$$\alpha_{\bar{A}} = \overline{(1-\alpha)_A^+}$$
 for every $\alpha, \beta \in [0,1]$ and A, B $\in F(X)$

16. Let A, B $\in F(X)$. Then, for all $\propto \in [0,1]$, Prove that A \subseteq B iff $\propto_A \subseteq \propto_B$.

 $(7 \times 2 = 14)$

PART C

III. Answer any five of the following. Each question carries 6 marks.

17. Solve the initial value problem that consists of the differential equation

$$(x^{2} + 1)\frac{dy}{dx} + 4xy = x$$
, where $y(2) = 1$.

18. Solve (x + 2y + 3) dx + (2x + 4y - 1) dy = 0.

Maximum Marks: 80

TB165150E

- 19. Find the general solution of the differential equation $x^3 \frac{d^3y}{dx^3} 4x^2 \frac{d^2y}{dx^2} + 8x \frac{dy}{dx} 8y = \ln x$.
- 20. State and prove second decomposition theorem
- 21. Using variation of parameters $\frac{d^2y}{dx^2} + y = \tan x$
- 22. Prove that the parametric equations of a surface are not always unique.
- 23. Find the integral curves of the equation $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}$
- 24. State and prove first decomposition theorem.

(5 × 6=30)

PART D

IV. Answer any two of the following. Each question carries 15 marks.

- 25. Solve $\frac{dy}{dx} + y = xy^3$.
- 26. Find the solution of the Solve $\frac{d^3y}{dx^3} 6 \frac{d^2y}{dx^2} + 11 \frac{dy}{dx} 6y = e^x$ using variation of parameters.

27. (a) Find the integral curves of the integral curves of the equation $\frac{adx}{(b-c)yz} = \frac{bdy}{(c-a)zx} = \frac{cdz}{(a-b)xy}$

(b) Eliminate arbitrary function f from the equation $f(x^2 + y^2 + z^2, z^2 - 2xy) = 0$.

28. a) Prove that a fuzzy set A on R is convex iff $A[\lambda x_1 + (1 - \lambda)x_2] \ge \min[A(x_1), A(x_2)]$

for every $x_1, x_2 \in R$ and $\lambda \in [0, 1]$.

b)Let A,B $\in F(X)$.then the following properties hold for all $\propto, \beta \in [0,1]$:

(i) $\propto +_A \subseteq \propto_A$; (ii) $\propto \leq \beta$ implies $\propto_A \supseteq \beta_A$ and $\propto +_A \supseteq \beta +_A$ (iii) $\propto_{(A \cap B)} = \propto_A \cap \propto_B$ and $\propto_{(A \cup B)} = \propto_A \cup \propto_B$ (iv) $\propto +_{(A \cap B)} = \propto +_A \cap \beta +_A$ and $\propto +_{(A \cup B)} = \propto +_A \cup \beta +_A$

 $(2 \times 15 = 30)$