TB165380E	Reg. No.:
	Name ·

B. Sc. DEGREE (C.B.C.S.S) EXAMINATION, OCTOBER 2018 (2016 Admission Regular & 2015 Admission Supplementary) SEMESTER V- CORE COURSE (MATHEMATICS) MT5B07B - ABSTRACT ALGEBRA

Time: Three Hours Maximum Marks: 80

PART A

- I. Answer all questions. Each question carries 1 mark.
- 1. On Z define * by a * b=a-b. Check whether * is a binary operation on Z.
- 2. Compute the subgroup <3> of the group Z_5 under addition modulo 5.
- 3. Express the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 3 & 6 & 1 & 2 \end{pmatrix}$ on $\{1,2,3,4,5,6\}$ as a product of disjoint cycles
- 4. Define a normal subgroup of a group G.
- 5. Is the set of all complex numbers with usual addition and multiplication a ring,
- Find the characteristic of the ring Z.

(6x1=6)

PART B

- II. Answer any seven questions. Each question carries 2 marks.
- 7. If G is a group with binary operation * and if a and b are any elements of G, then prove that the linear equations a * x = b has a unique solution in G
- 8. Write the proper subgroups of Klein four group.
- 9. Compute (1,4,5) (7,8) (2,1) (2,5,7) ...
- 10. Find all the cosets of 5Z of Z
- 11. If $\phi: G \to G'$ is a group homomorphism, then prove that $\text{Ker } \phi$ is a normal subgroup of G.
- 12. Prove that a group isomorphism maps identity onto identity and inverses onto inverses.
- 13. Find the number of elements in the cyclic sub group of Z_{30} generated by 25.
- 14. Find $\phi(18)$ for $\phi: Z \to Z_{10}$ such that $\phi(1) = 6$
- 15. Prove that every field F is an Integral Domain.
- 16. Find all divisors of zero in \mathbb{Z}_{6} .

(7X2=14)

PART C

- III. Answer any five questions. Each question carries 6 marks.
- 17. If H and K are subgroups of an abelian group G, then is H U K a subgroup of G?
- 18. Prove that every permutation of a finite set A is a product of disjoint cycles.
- 19. Prove that a sub group of a cyclic group is cyclic.
- 20. Let G be a cyclic group with n elements and generated by a. Let $b \in G$ and $b = a^s$, then b generates a cyclic subgroup H containing $\frac{n}{d}$ elements, where d is the g.c.d of n and s.

1

21. Prove that any infinite cyclic group G is isomorphic to the group Z of integers under

(P.T.O)

addition.

- 22. Prove that a homomorphism ϕ of a group G is a one-one function iff Ker $\phi = \{e\}$.
- 23. Solve 3x=2 in the field Z_7 .
- 24. a). Define a field.
 - b). Prove that cancellation laws hold in a ring R if and only if R has no divisors of 0.

(5x6=30)

PART D

- IV. Answer any two questions. Each question carries 15 marks.
- 25. a) Is the set of all n x n matrices a group under matrix addition and multiplication.
 - b) Define a general linear group.
 - c). Prove that intersection of two subgroups of a group G is a subgroup of G.
- 26. a) State and prove Cayley's Theorem.
 - b) Prove that for $n \ge 2$, the number of even permutations in S_n is same as the number of odd permutations.
- 27. a) State Fundamental Homomorphism theorem for groups.
 - b) Let H be a normal subgroup of G. Then $\gamma: G \to G'$ given by $\gamma(x) = xH$ is a homomorphism with Kernel H.
 - c) Find the order of (8, 4, 10) in the group $Z_{12} \times Z_{60} \times Z_{24}$.
- 28. a)Define a normal group.
 - b) Let $\phi: G \to G'$ be a group homomorphism, let $H = \operatorname{Ker} \phi$. Let $a \in G$. Then the set $\phi^{-1}[\{\phi(a)\}] = \{x \in G | \phi(x) = \phi(a)\}$ is the left coset aH of H.
 - c) Let H be a normal subgroup of G. Then show that the cosets of H form a group G/H under the binary operation (aH)(bH)=(ab)H.

(2x15=30)