\qquad
\qquad

B. Sc. DEGREE (C.B.C.S.S) EXAMINATION, OCTOBER 2018

(2016 Admission Regular \& 2015 Admission Supplementary)
SEMESTER V- CORE COURSE (MATHEMATICS)
MT5B07B - ABSTRACT ALGEBRA

Time: Three Hours

Maximum Marks: $\mathbf{8 0}$

PART A

I. Answer all questions. Each question carries 1 mark.

1. On Z define * by $a * b=a-b$. Check whether * is a binary operation on Z.
2. Compute the subgroup $<3>$ of the group Z_{5} under addition modulo 5 .
3. Express the permutation $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 3 & 6 & 1 & 2\end{array}\right)$ on $\{1,2,3,4,5,6\}$ as a product of disjoint cycles
4. Define a normal subgroup of a group G.
5. Is the set of all complex numbers with usual addition and multiplication a ring,
6. Find the characteristic of the ring Z.
(6x1=6)

PART B

II. Answer any seven questions. Each question carries 2 marks.
7. If G is a group with binary operation* and if a and b are any elements of G , then prove that the linear equations $a * x=b$ has a unique solution in G
8. Write the proper subgroups of Klein four group.
9. Compute $(1,4,5)(7,8)(2,1)(2,5,7)$..
10. Find all the cosets of 5 Z of Z
11. If $\phi: G \rightarrow G^{\prime}$ is a group homomorphism, then prove that $\operatorname{Ker} \phi$ is a normal subgroup of G.
12. Prove that a group isomorphism maps identity onto identity and inverses onto inverses.
13. Find the number of elements in the cyclic sub group of Z_{30} generated by 25 .
14. Find $\phi(18)$ for $\phi: Z \rightarrow Z_{10}$ such that $\phi(1)=6$
15. Prove that every field F is an Integral Domain.
16. Find all divisors of zero in Z_{6}.

PART C

III. Answer any five questions. Each question carries 6 marks.
17. If H and K are subgroups of an abelian group G , then is H U K a subgroup of G ?.
18. Prove that every permutation of a finite set A is a product of disjoint cycles.
19. Prove that a sub group of a cyclic group is cyclic.
20. Let G be a cyclic group with n elements and generated by a. Let $b \in G$ and $b=a^{s}$, then b generates a cyclic subgroup H containing $\frac{n}{d}$ elements, where d is the g.c.d of n and s.
21. Prove that any infinite cyclic group G is isomorphic to the group Z of integers under
addition.
22. Prove that a homomorphism ϕ of a group G is a one-one function iff $\operatorname{Ker} \phi=\{\mathrm{e}\}$.
23. Solve $3 x=2$ in the field Z_{7}.
24. a).Define a field.
b). Prove that cancellation laws hold in a ring R if and only if R has no divisors of 0 .
(5x6=30)

PART D

IV. Answer any two questions. Each question carries $\mathbf{1 5}$ marks.
25. a) Is the set of all $n \mathrm{x} \mathrm{n}$ matrices a group under matrix addition and multiplication.
b) Define a general linear group.
c). Prove that intersection of two subgroups of a group G is a subgroup of G.
26. a) State and prove Cayley's Theorem.
b) Prove that for $n \geq 2$, the number of even permutations in S_{n} is same as the number of odd permutations.
27. a) State Fundamental Homomorphism theorem for groups.
b) Let H be a normal subgroup of G . Then $\gamma: G \rightarrow G^{\prime}$ given by $\gamma(x)=x H$ is a homomorphism with Kernel H .
c) Find the order of $(8,4,10)$ in the group $Z_{12} \mathrm{X}_{60} \mathrm{X}_{24}$.
28. a)Define a normal group.
b) Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism, let $\mathrm{H}=\operatorname{Ker} \phi$. Let $a \in G$. Then the set $\phi^{-1}[\{\phi(a)\}]=\{x \in G \mid \phi(x)=\phi(a)\}$ is the left coset aH of H .
c) Let H be a normal subgroup of G . Then show that the cosets of H form a group G / H under the binary operation $(\mathrm{aH})(\mathrm{bH})=(\mathrm{ab}) \mathrm{H}$.

