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ABSTRACT 

The proliferation of Internet of Things (IoT) sensors has opened doors to novel applications 
but also introduced new security challenges. These sensors are susceptible to vulnerabilities 
that could be exploited for malicious purposes. This study delves into the effectiveness of Deep 
Learning (DL) algorithms in analyzing vulnerabilities within IoT sensors. We propose a 
framework centred on Convolutional Neural Networks (CNNs) for intrusion detection within 
IoT networks. The framework investigates three distinct CNN architectures to determine the 
most accurate approach for vulnerability analysis: 

1. Baseline CNN: This model employs a standard CNN architecture for network traffic 
classification. 

2. CNN-BiLSTM: This variation incorporates Bidirectional Long Short-Term Memory 
(BiLSTM) layers after the convolutional layers. BiLSTM layers excel at capturing 
sequential dependencies within data, potentially leading to higher accuracy by 
considering the temporal nature of network traffic. 

3. CNN-GRU: This model utilizes Gated Recurrent Unit (GRU) layers instead of 
BiLSTMs. GRUs offer similar functionality but with a simpler architecture. 

The KDD Cup 99 dataset, a well-established benchmark for intrusion detection, serves as the 
foundation for training and evaluating these models. The code implements essential data 
preprocessing steps: 

 Label Encoding: Categorical features are converted into numerical representations for 
compatibility with the CNN architecture. 

 Feature Standardization: Numerical features are normalized using standardization 
techniques to ensure all features contribute equally during training. 

 Reshaping for CNN Layer: The data is reshaped into a format suitable for the CNN's 
convolutional operations. 

Following preprocessing, each model undergoes training and evaluation. Their performance is 
primarily compared based on their accuracy in classifying diverse network traffic patterns into 
distinct attack categories.  

By meticulously comparing the accuracy of these three CNN architectures, this study aims to 
identify the most accurate approach for vulnerability analysis in IoT sensor networks. 
Additionally, the code demonstrates how to load a pre-trained model and make predictions on 
new, unseen sensor data. This practical example showcases the potential application of the 
most accurate DL model in real-world IoT security scenarios. 

This research contributes to the ongoing exploration of DL for enhancing IoT security. By 
comparing the accuracy of CNN, CNN-BiLSTM, and CNN-GRU architectures in intrusion 
detection, we offer valuable insights for securing sensor-based networks and mitigating 
potential vulnerabilities. Ultimately, this work aims to identify the most accurate DL 
architecture for intrusion detection, leading to more robust security solutions for IoT sensor 
networks. 
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CHAPTER 1: 

INTRODUCTION 

 

1.1 Background 

The objective of the project is to develop and evaluate machine learning models for detecting 
and analysing vulnerabilities in IoT sensor networks. 

The code implements three different deep learning architectures: CNN-BiLSTM, CNN-GRU, 
and CNN. These architectures are applied to a dataset containing network traffic data, 
specifically the KDD Cup 10 percent dataset, which is a part of the commonly used dataset for 
network intrusion detection tasks. The KDDCup99 is the original IoT net-work intrusion 
dataset that was created in 1999. 

 

1.2 Internet of Things 

The Internet of Things (IoT) has revolutionized various aspects of our lives, connecting 
everyday objects to the internet and enabling them to collect and transmit data. However, the 
growing prevalence of IoT sensors introduces significant security challenges. These sensors 
are often resource-constrained and may have inherent vulnerabilities that malicious actors can 
exploit to gain unauthorized access, disrupt operations, or steal sensitive data.  

The Internet of Things (IoT) refers to everyday objects that are equipped with sensors and 
software, allowing them to collect and exchange data over the internet. This creates a network 
of connected devices that can automate tasks and improve efficiency. However, IoT faces some 
challenges such as security, standardization and privacy. We can address these challenges 
by implementing stronger encryption, regular software updates, and secure authentication 
methods that can improve IoT security, establishing industry-wide standards for 
communication protocols and data formats can ensure better compatibility between devices 
and clear user consent and data anonymization practices can help protect user privacy in the 
IoT world. 

 

1.3 Deep Learning 

Deep learning is a powerful subfield of machine learning inspired by the structure and function 
of the human brain. It uses artificial neural networks with multiple layers to learn complex 
patterns from data. Unlike traditional machine learning algorithms that require manual feature 
extraction, deep learning excels at automatically extracting features from raw data like images, 
text, or sound. 

In technical terms, deep learning uses something called "neural networks," which are inspired 
by the human brain. These networks consist of layers of interconnected nodes that process 
information. The more layers, the "deeper" the network, allowing it to learn more complex 
features and perform more sophisticated tasks. 
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Fig 1.1 The Similarity Between Neurons and Neural Networks 

 

1.3.1 Parts of a Neural Network 

 

Fig 1.2 Parts of a neural network 

A neural network typically consists of several interconnected layers, each performing specific 
operations on the input data. Here are the main parts of a neural network: 

1. Input Layer: 

 The input layer is where the data is fed into the network. 

 Each neuron in the input layer represents a feature or attribute of the input data. 

 The number of neurons in the input layer corresponds to the dimensionality of 
the input data. 

2. Hidden Layers: 

 Hidden layers are the intermediate layers between the input and output layers. 

 Each hidden layer contains a set of neurons, and the number of hidden layers 
and neurons per layer can vary based on the complexity of the problem. 



Vulnerability Analysis of IOT Sensors  
Using Deep Learning Technology                                                                                               BCA (CT & ISM) 

 
ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 3 

 Hidden layers are responsible for learning and extracting features from the input 
data through nonlinear transformations. 

3. Weights and Biases: 

 Each connection between neurons in adjacent layers is associated with a weight. 

 Weights determine the strength of the connection between neurons and are 
adjusted during the training process to minimize the error. 

 Biases are additional parameters added to each neuron that allow the network 
to learn more complex functions. 

4. Activation Function: 

 The activation function introduces nonlinearity into the network, enabling it to 
learn complex patterns and relationships in the data. 

 Common activation functions include sigmoid, tanh, ReLU (Rectified Linear 
Unit), and softmax (for classification tasks). 

5. Output Layer: 

 The output layer produces the final predictions or outputs of the network. 

 The number of neurons in the output layer depends on the nature of the task 
(e.g., regression, binary classification, or multi-class classification). 

 The activation function used in the output layer depends on the type of problem 
being solved (e.g., sigmoid for binary classification, softmax for multi-class 
classification). 

6. Loss Function: 

 The loss function measures the difference between the predicted output and the 
actual target output. 

 It serves as a measure of how well the model is performing during training. 

 The goal of training is to minimize the loss function by adjusting the network's 
weights and biases. 

7. Optimizer: 

 The optimizer is responsible for updating the weights and biases of the network 
during the training process. 

 It uses the gradients of the loss function with respect to the network parameters 
to determine how to adjust them in order to minimize the loss. 

These are the key components of a neural network architecture.  
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1.3.2 Deep Learning Algorithms 

Here's a brief description of some commonly used deep learning algorithms: 

1. Convolutional Neural Networks (CNNs): 

 CNNs are primarily used for tasks involving image recognition and processing. 

 They consist of convolutional layers that apply filters to input data, followed by 
pooling layers to reduce dimensionality. 

 CNNs are highly effective in capturing spatial hierarchies of features in images. 

2. Recurrent Neural Networks (RNNs): 

 RNNs are designed to handle sequential data where the order of elements 
matters, such as time series data or natural language. 

 They have connections that form directed cycles, allowing them to retain 
information over time. 

 However, traditional RNNs suffer from the vanishing gradient problem, limiting 
their ability to capture long-term dependencies. 

3. Long Short-Term Memory (LSTM): 

 LSTMs are a type of RNN architecture designed to address the vanishing 
gradient problem. 

 They incorporate specialized memory cells and gating mechanisms to 
selectively remember or forget information over long sequences. 

 LSTMs have been widely used in tasks involving sequential data processing, 
such as language modelling, machine translation, and speech recognition. 

4. Gated Recurrent Units (GRUs): 

 GRUs are another variant of the RNN architecture, similar to LSTMs but with 
a simplified gating mechanism. 

 They have fewer parameters compared to LSTMs, making them 
computationally less expensive and easier to train. 

 GRUs are suitable for tasks requiring memory over long sequences, such as 
language modelling and sentiment analysis. 

These algorithms, among others, form the backbone of deep learning and have been 
instrumental in driving advancements in artificial intelligence across various industries and 
applications. 

1.3.3 Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNNs) are a powerful type of deep learning algorithm 
specifically designed for image recognition and analysis. They excel at finding patterns in grid-
like data, making them the go-to choice for various computer vision tasks. 
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Structure of a CNN: 

 

Fig 1.3 Structure of a CNN 

A CNN architecture typically consists of three main types of layers: 

1. Convolutional Layers: These layers are the heart of a CNN. They apply filters (also 
called kernels) to the input image, extracting features like edges, shapes, and textures. 
The filter slides across the image, performing element-wise multiplication with the 
underlying data and generating a feature map. 

2. Pooling Layers: These layers down sample the feature maps produced by the 
convolutional layers. This reduces the dimensionality of the data, making it 
computationally efficient and helping to control overfitting. Common pooling 
techniques include max pooling, which selects the maximum value from a specific 
region of the feature map. 

3. Fully-Connected Layers: These layers function similarly to traditional neural 
networks, taking the outputs from the pooling layers and performing classifications. 
They use activation functions to introduce non-linearity and help the network learn 
complex relationships between the features. 

How CNNs Learn: 

 Training: CNNs are trained on large datasets of labelled images. During training, the 
network adjusts the weights associated with its filters and neurons based on the 
difference between the predicted output and the actual label of the image. 

 Backpropagation: This is a critical training technique used to adjust the weights in the 
network. Errors are propagated backward through the layers, allowing the network to 
learn from its mistakes and improve its feature extraction and classification capabilities. 

Applications of CNNs: 

 Image Classification: Recognizing objects, animals, or scenes within images. 

 Object Detection: Locating and identifying specific objects within an image. 
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 Image Segmentation: Dividing an image into different regions corresponding to 
specific objects or features. 

 Facial Recognition: Identifying individuals based on their facial features. 

 

1.3.4 Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are a powerful type of deep learning architecture designed 
to handle sequential data. Unlike traditional neural networks that process individual data points, 
RNNs excel at analysing sequences where the order of elements matters. This makes them good 
for tasks like language translation, speech recognition, and time series forecasting. 

RNN Architecture: 

An RNN is built on repeating modules called cells. Each cell processes a single element from 
the sequence and updates its hidden state based on two factors: the current input (the element 
itself) and the previous hidden state (the network's memory of the sequence so far). This 
updated hidden state is then passed on to the next cell in the sequence, allowing information to 
flow and accumulate context throughout the network. 

 

Fig 1.4 Structure of RNN 

Imagine an RNN processing a sentence word by word. The first word becomes the current 
input, and the hidden state is initialized. As the network processes each subsequent word, the 
current input and the previous hidden state (containing information from prior words) are used 
to update the hidden state. This allows the network to consider the context of previous words 
when interpreting the current word. 

Applications of RNNs: 

 Machine Translation: Translating text from one language to another, considering the 
context of the entire sentence. 

 Speech Recognition: Converting spoken language into text, accounting for the order 
of words within a speech pattern. 

 Text Generation: Generating text that follows a specific style or language pattern. 

 Time Series Forecasting: Predicting future values in a time series based on historical 
data. 
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1.3.5 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) networks are a specialized type of Recurrent Neural 
Network (RNN) designed to address a significant limitation of traditional RNNs: the vanishing 
gradient problem. This problem hinders RNNs' ability to learn long-term dependencies within 
sequential data. LSTMs overcome this limitation, making them a powerful tool for tasks 
involving sequences like text, speech, and time series data. 

 

Fig 1.5 Long Short-Term Memory 

The LSTM Architecture: 

LSTMs address this challenge by introducing a gating mechanism that controls the flow of 
information within the network. This mechanism consists of several important components: 

 Cell State: This acts as the network's memory, carrying information across different 
time steps. 

 Forget Gate: This gate decides what information to forget from the cell state of the 
previous time step. It considers the new input and the previous cell state, ultimately 
outputting values between 0 and 1. A value closer to 1 signifies retaining more 
information, while 0 indicates forgetting. 

 Input Gate: This gate determines what new information to store in the cell state. It 
analyses the current input and the previous cell state, outputting values between 0 and 
1. 

 Output Gate: This gate controls what information from the cell state to output as part 
of the hidden state (the network's output at a specific time step). 

How LSTMs Learn: 

 Information Flow: During training, the LSTM processes the sequence one element at 
a time. At each step, the forget gate, input gate, and output gate determine how 
information flows through the cell state and hidden state. 

 Backpropagation: Similar to other neural networks, LSTMs utilize backpropagation 
to adjust their internal weights and learn from errors. 
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Applications of LSTMs: 

 Machine Translation: Translating text from one language to another while considering 
the context of the entire sentence. 

 Speech Recognition: Converting spoken language into text, accounting for long-term 
dependencies within speech patterns. 

 Time Series Forecasting: Predicting future values in a time series based on historical 
data, such as stock prices or weather patterns. 

 Anomaly Detection: Identifying unusual patterns within sequences, useful for fraud 
detection or system monitoring. 

 

1.3.6 Gated Recurrent Units (GRU) 

Gated Recurrent Units (GRUs) are a type of RNN that addresses the vanishing gradient 
problem by introducing a gating mechanism similar to LSTMs. This mechanism allows GRUs 
to control the flow of information within the network and focus on the most relevant parts of 
the sequence. 

 

Fig 1.6 Gated Recurrent Unit Architecture 

GRU Architecture: 

A GRU cell resembles an RNN cell with the addition of these gating mechanisms. The update 
gate and reset gate control the flow of information through the hidden state, mitigating the 
vanishing gradient problem and allowing GRUs to learn long-term dependencies more 
effectively than traditional RNNs. 

Similar to LSTMs, GRUs utilize gates to regulate information flow. However, GRUs have a 
simpler architecture compared to LSTMs, using a single update gate and a reset gate: 

 Update Gate: This gate decides how much of the previous hidden state information to 
keep and how much new information from the current input to incorporate. 

 Reset Gate: This gate determines which parts of the previous hidden state are still 
relevant and should be carried forward. 
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Applications of GRUs: 

 Similar to RNNs: GRUs can be applied to various tasks involving sequential data, such 
as machine translation, speech recognition, and text generation. 

 Potentially Faster Training: Due to their simpler architecture, GRUs can sometimes 
train faster than LSTMs on specific tasks. 

 

1.4 Deep Learning Algorithms Used in Project 

1.4.1 Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNNs) are a class of deep neural networks particularly well-
suited for tasks involving image recognition and processing. They have played a pivotal role 
in advancing computer vision applications, including object detection, image classification, 
and semantic segmentation. 

Key Components: 

 Convolutional Layers: CNNs utilize convolutional layers to extract features from 
input images. These layers apply learnable filters to small regions of the input image, 
capturing patterns such as edges, textures, and shapes. Through successive 
convolutions, deeper layers can learn more abstract and complex features. 
 

 Pooling Layers: Pooling layers are used to down sample feature maps produced by 
convolutional layers, reducing spatial dimensions and computational complexity while 
preserving important features. Common pooling operations include max pooling and 
average pooling. 
 

 Activation Functions: Non-linear activation functions, such as ReLU (Rectified 
Linear Unit), are applied to the output of convolutional and pooling layers. These 
functions introduce non-linearity into the network, enabling it to learn complex 
mappings between input and output. 
 

 Fully Connected Layers: Following the convolutional and pooling layers, fully 
connected layers perform high-level reasoning and decision-making. These layers 
integrate features learned from previous layers and map them to the output classes or 
labels. 
 

Applications: 

CNNs have demonstrated remarkable performance in various computer vision tasks, including: 

 Image Classification: Assigning labels or categories to input images. 

 Object Detection: Identifying and localizing objects within images or videos. 

 Semantic Segmentation: Pixel-wise classification of objects and regions in images. 

 Facial Recognition: Recognizing and verifying faces in images or videos. 
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 Medical Image Analysis: Analysing medical images for diagnosis and treatment 
planning. 

1.4.2 CNN-BiLSTM (Convolutional Neural Network - Bidirectional Long Short-Term 
Memory) 

CNN-BiLSTM is a hybrid deep learning architecture that combines the strengths of 
Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory 
(BiLSTM) networks. This architecture is specifically designed for processing sequential data 
with spatial and temporal dependencies, such as time series data and sequences of features 
extracted from images. 

Key Components: 

1. Convolutional Layers: The CNN component of the architecture extracts spatial 
features from input data. Convolutional layers apply a series of learnable filters to input 
sequences, capturing local patterns and spatial hierarchies. These layers are effective at 
feature extraction and dimensionality reduction. 

2. Bidirectional LSTM Layers: The BiLSTM component processes the output of the 
convolutional layers in both forward and backward directions. Bidirectional LSTMs 
consist of two LSTM networks: one processes the input sequence from the beginning 
to the end, while the other processes it in reverse. This enables the model to capture 
both past and future context for each time step, allowing for a better understanding of 
temporal dependencies. 

3. Pooling Layers (Optional): Pooling layers may be incorporated after the convolutional 
layers to down sample feature maps and reduce computational complexity while 
preserving important features. 

4. Fully Connected Layers: Following the CNN-BiLSTM layers, fully connected layers 
perform high-level reasoning and decision-making. These layers integrate features 
learned from the preceding layers and map them to the output classes or labels. 

Training and Optimization: 

Training CNN-BiLSTM involves feeding the network with labelled sequential data, computing 
the loss between predicted and true labels, and optimizing network parameters (weights and 
biases) using backpropagation and optimization algorithms such as stochastic gradient descent 
(SGD) or Adam. 

Applications: 

CNN-BiLSTM architectures have been successfully applied to various sequential data analysis 
tasks, including: 

 Time Series Forecasting: Predicting future values in sequential data, such as financial 
time series or sensor readings. 

 Video Analysis: Analysing sequences of frames in videos for action recognition, scene 
understanding, and video captioning. 
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 Natural Language Processing: Processing sequences of words or characters for tasks 
such as sentiment analysis, machine translation, and named entity recognition. 

1.4.3 GRU (Gated Recurrent Unit) 

Gated Recurrent Unit (GRU) is a type of recurrent neural network (RNN) architecture designed 
to address the limitations of traditional RNNs, such as vanishing gradients and difficulty in 
capturing long-term dependencies. GRUs are particularly effective for sequential data 
processing tasks where information needs to be retained over multiple time steps. 

Key Components: 

1. Update Gate: The update gate in GRU determines how much of the previous memory 
should be retained and how much of the new information should be incorporated. It 
computes the relevance of the previous memory and the new input at each time step. 

2. Reset Gate: The reset gate controls the degree to which the previous memory should 
be forgotten or reset. It decides which parts of the previous memory are outdated and 
should be ignored. 

3. Candidate Activation: The candidate activation computes the new candidate memory 
based on the current input and the reset gate. It combines the new input with the relevant 
parts of the previous memory. 

4. Hidden State: The hidden state of the GRU represents the current memory state or 
context. It is updated at each time step based on the update gate and the candidate 
activation. 

Training and Optimization: 

During training, GRUs learn to capture temporal dependencies and patterns in sequential data. 
The training process involves feeding the network with labeled sequential data, computing the 
loss between predicted and true labels, and optimizing network parameters (weights and biases) 
using backpropagation and optimization algorithms such as stochastic gradient descent (SGD) 
or Adam. 

Applications: 

GRUs have been successfully applied to various sequential data processing tasks, including: 

 Natural Language Processing: Processing sequences of words or characters for tasks 
such as language modelling, machine translation, and sentiment analysis. 

 Time Series Forecasting: Predicting future values in sequential data, such as stock 
prices, weather data, or sensor readings. 

 Speech Recognition: Converting speech signals into text for tasks such as voice 
transcription and virtual assistants. 

 Video Analysis: Analysing sequences of frames in videos for action recognition, scene 
understanding, and video captioning. 
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1.5 Project Objective 

The Internet of Things (IoT) has revolutionized various aspects of our lives, connecting 
everyday objects to the Internet and enabling them to collect and transmit data. However, the 
growing prevalence of IoT sensors introduces significant security challenges. These sensors 
are often resource-constrained and may have inherent vulnerabilities that malicious actors can 
exploit to gain unauthorized access, disrupt operations, or steal sensitive data. 

This project investigates the effectiveness of Deep Learning (DL) algorithms for vulnerability 
analysis in IoT sensors. DL has emerged as a powerful tool for network intrusion detection, 
and this project explores its potential for securing sensor-based networks. We propose a 
framework centred on Convolutional Neural Networks (CNNs) for intrusion detection within 
IoT networks. 

The project compares the performance of three distinct CNN architectures: 

Baseline CNN: This model employs a standard CNN architecture for network traffic 
classification. 

CNN-BiLSTM: This variation incorporates Bidirectional Long Short-Term Memory 
(BiLSTM) layers after the convolutional layers. BiLSTM layers excel at capturing sequential 
dependencies within data, potentially improving intrusion detection by considering the 
temporal nature of network traffic. 

CNN-GRU: This model utilizes Gated Recurrent Unit (GRU) layers instead of BiLSTMs. 
GRUs offer similar functionality but with a simpler architecture. 

The project utilizes the KDD Cup 10 percent dataset, a benchmark dataset for intrusion 
detection, to train and evaluate these models. We perform essential data preprocessing steps 
like label encoding, feature standardization, and reshaping for the CNN layer. Following 
preprocessing, each model undergoes training and evaluation. 

Our primary objective is to identify the most accurate model for vulnerability analysis in IoT 
sensor networks. We compare the models' performance based on their ability to classify various 
network traffic patterns into distinct attack categories. Classification reports and visualizations 
of training and validation loss/accuracy curves will be employed to assess model convergence, 
and generalizability, and ultimately, pinpoint the most accurate model for this task. 

This project contributes valuable insights into leveraging DL for enhanced IoT security. By 
comparing the accuracy of CNN, CNN-BiLSTM, and CNN-GRU architectures in intrusion 
detection, we aim to identify the most effective approach for vulnerability analysis and 
intrusion detection in sensor-based networks. Additionally, the project demonstrates the 
process of loading a trained model and making predictions on new sensor data, showcasing the 
practical application of the most accurate DL model in real-world IoT security scenarios. 
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CHAPTER 2: 

LITERATURE SURVEY 

 

Predictive maintenance (PdM) has become a crucial aspect of modern industries, utilizing 
machine learning (ML) and Internet-of-Things (IoT) sensors to predict equipment failures 
before they occur. These PdM systems offer significant benefits such as reduced downtime, 
lower maintenance costs, and increased production. However, the reliance on IoT sensors and 
ML algorithms introduces vulnerabilities to cyberattacks that can manipulate sensor data and 
compromise the effectiveness of PdM . 

Existing research focuses on improving the accuracy of PdM systems using deep learning (DL) 
techniques. However, there is a critical gap regarding the impact of cyberattacks, particularly 
False Data Injection Attacks (FDIA), on these systems. FDIA stealthily alters sensor 
measurements, bypassing basic detection mechanisms and feeding manipulated data into the 
ML models. This can lead to delayed maintenance or even catastrophic failures in safety-
critical applications, highlighting the need for further investigation. 

While extensive research explores attack detection and mitigation in cyber-physical systems 
(CPS), the impact of FDIA on PdM systems remains largely unexplored. This is concerning, 
especially for applications like aircraft engine maintenance, where delayed actions due to FDIA 
can cause mid-air engine failures. The widespread use of PdM systems in the aerospace 
industry by companies like Pratt and Whitney, Rolls-Royce, and General Electric further 
emphasizes the importance of addressing this issue. 

Modern aircraft engines, equipped with thousands of sensors, leverage advanced DL 
algorithms to predict maintenance needs and optimize fuel usage. However, the vulnerability 
of these sensor-based systems to attacks remains a challenge. Existing sensor attack detection 
solutions designed for broader IoT and CPS domains might not be suitable for PdM due to 
scalability limitations and resource constraints on individual sensors. 

This research aims to bridge this gap by investigating the impact of FDIA on PdM systems. We 
will model realistic scenarios with a limited number of compromised sensors and analyze the 
effects on different deep learning-based PdM models. This will contribute valuable insights 
into the vulnerabilities of PdM systems and pave the way for developing robust solutions 
against cyberattacks.[1] 

The vast number of interconnected devices within the Internet of Things (IoT) landscape 
presents significant security challenges. The proliferation of IoT devices across smart homes, 
industrial systems, and personal devices introduces new attack vectors for malicious actors to 
exploit. These devices often collect and transmit sensitive data, making them prime targets for 
eavesdropping, data breaches, and denial-of-service attacks. Traditional security methods are 
struggling to keep pace with the evolving threats posed by the ever-growing IoT ecosystem. 

Deep learning has emerged as a promising approach for intrusion detection in IoT systems. 
Deep learning algorithms can effectively analyze large amounts of data to identify patterns and 
anomalies that may indicate malicious activity. This research investigates the performance of 
three deep learning models for intrusion detection in IoT: convolutional neural networks 
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(CNNs), long short-term memory (LSTM), and gated recurrent units (GRUs). CNNs are well-
suited for extracting spatial features from data, making them effective for identifying anomalies 
in network traffic patterns. LSTMs and GRUs are a type of recurrent neural network (RNN) 
that can learn long-term dependencies within data sequences. This makes them suitable for 
analyzing time-series data collected from IoT devices, where identifying patterns and 
anomalies across sequences of sensor readings can be crucial for intrusion detection. 

By comparing the performance of these three deep learning models on a standard IoT intrusion 
detection dataset, this research aims to identify the most accurate approach for intrusion 
detection in IoT systems. The findings of this research will contribute to the development of 
more secure IoT environments by improving the accuracy of intrusion detection and mitigating 
the risks associated with cyberattacks. [2] 

As cyber attacks and cybercriminals target cyber-physical systems (CPSs) with increasing 
frequency, the need for robust detection mechanisms becomes paramount. While traditional 
methods struggle to keep pace, a new era of opportunity dawns with the emergence of machine 
learning (ML), particularly deep learning (DL). DL's layered architecture and ability to extract 
valuable information from training data make it superior to traditional machine learning 
methods in this context. The survey analyzes recent DL solutions through a six-step 
methodology, highlighting the importance of understanding the CPS scenario, identifying 
relevant attacks, formulating the detection problem, customizing DL models, acquiring training 
data, and evaluating performance. Existing research shows promise for DL-based attack 
detection, partly due to the availability of high-quality public datasets. The survey concludes 
by outlining key challenges, opportunities, and future research directions in this domain. [3] 

In the domain of predictive maintenance for rotating machines, a promising approach revolves 
around analyzing the shape of the rotor shaft's orbit. This survey delves into a study that 
proposes a novel algorithm for this purpose, leveraging Convolutional Neural Networks 
(CNNs). CNNs are powerful tools for image pattern recognition, and in this application, the 
CNN is trained on a comprehensive database of various orbit shapes. This training empowers 
the CNN to not only detect deviations from normal operating patterns but also to classify the 
specific fault type causing the anomaly. This capability offers a multitude of benefits for 
predictive maintenance programs. Early fault detection becomes possible, allowing for timely 
intervention to prevent catastrophic failures and ensure operational safety. Additionally, 
optimized maintenance schedules can be implemented based on the insights gleaned from orbit 
analysis, leading to reduced maintenance costs and improved resource allocation. [4] 

Smart home devices, while bringing convenience to our lives, introduce new security risks due 
to the lack of standardized security measures. Existing vulnerability studies often focus on 
well-known vendors, who tend to have stronger security due to public scrutiny. This research 
highlights the potential vulnerability of lesser-known vendors with lax security practices. 
Through a review of existing research and a comparative analysis of security postures between 
different vendors, the study aims to confirm that lesser-known vendors are under-represented 
in vulnerability research and have weaker security. This focus on under-researched areas 
contributes to a more comprehensive understanding of security vulnerabilities in smart home 
IoT devices. [5] 
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CHAPTER 3: 

EXISTING SYSTEM 

In the era of Industry 4.0, predictive maintenance (PdM) solutions have emerged as crucial 
tools for fault prediction in components and systems. These solutions leverage advanced 
machine learning algorithms, particularly deep learning, and Internet-of-Things (IoT) sensors 
to enhance predictive capabilities. However, the susceptibility of IoT sensors and deep learning 
algorithms to cyber-attacks, specifically False Data Injection Attacks (FDIA), poses a 
significant threat to the reliability and effectiveness of PdM systems. 

3.1 Objective 

This study aims to investigate the repercussions of False Data Injection Attacks on deep 
learning-enabled PdM systems, focusing on the vulnerabilities introduced by compromised IoT 
sensor data. By analysing the impact of FDIA on predictive maintenance processes, the 
research seeks to underscore the importance of developing resilient algorithms and detection 
mechanisms to mitigate these threats effectively. 

3.2 Methodology 

1. Dataset Selection: 
 The study utilizes NASA's C-MAPSS dataset for modelling False Data Injection 

Attacks (FDIA) on a turbofan engine Predictive Maintenance (PdM) system. 
 

2. Algorithm Selection and Training: 
 Three state-of-the-art deep learning algorithms are employed for RUL prediction: 

Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and 
Convolutional Neural Network (CNN). 

 The algorithms are trained on the C-MAPSS dataset to predict the Remaining 
Useful Life (RUL) of the turbofan engine. 
 

3. Performance Evaluation: 
 The performance of LSTM, GRU, and CNN models is evaluated based on their 

accuracy in predicting RUL using the dataset. 
 

4. False Data Injection Attack Modelling: 
 Two types of False Data Injection Attacks (FDIA) are modeled and applied to the 

turbofan engine sensor data: continuous and interim attacks. 
 The attacks involve compromising sensor measurements by a small margin to 

bypass fault detection mechanisms and impact the predictive maintenance process. 
 

5. Impact Assessment: 
 The effects of continuous and interim FDIA on the predictive maintenance 

systems based on LSTM, GRU, and CNN models are analyzed. 
 The study assesses how the attacks influence the accuracy and resilience of the 

deep learning-enabled PdM systems. 
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6. Result Analysis: 
 The obtained results are analyzed to determine the extent of the impact of FDIA 

on RUL prediction accuracy and the performance of the deep learning 
algorithms. 

 Insights are drawn regarding the vulnerabilities introduced by compromised IoT 
sensor data and the implications for predictive maintenance processes. 
 

7. Comparison and Validation: 
 A comparison is made between the performance of LSTM, GRU, and CNN 

models in the presence of FDIA to evaluate their robustness and effectiveness. 
 The validation of the results is conducted to ensure the reliability and 

reproducibility of the findings. 
 

8. Detection Mechanism Exploration: 
 The study may explore potential detection mechanisms or strategies to mitigate 

the effects of False Data Injection Attacks on deep learning-enabled predictive 
maintenance systems. 

 Recommendations for enhancing the security and resilience of PdM systems 
against cyber-attacks may be proposed based on the findings. 

 
3.3 Result 
 

 
Fig 3.1 Result Analysis of PdM System 

 
 The GRU-based PdM model surpasses existing literature in terms of RUL prediction 

accuracy using the C-MAPSS dataset. 
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 Continuous and interim FDIA significantly impact RUL prediction accuracy, 
highlighting the vulnerabilities of deep learning-enabled PdM systems to sensor 
attacks. 

 The stealthy nature of FDIA complicates detection, emphasizing the necessity for 
robust detection techniques. 

 
3.4 Future Scope 
 
More datasets can be explored for intrusion detection on IoT devices in future. This work can 
also be extended to study the effect of other Deep Learning variants of algorithms such as 
genetic algorithm (GA) and bidirectional short-term memory (BiLSTM) for better 
performance. 
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CHAPTER 4: 

PROPOSED SYSTEM 

The goal is to detect network intrusions or attacks based on network traffic data. Each record 
in the dataset represents a network connection, and the task is to classify each connection as 
either normal or malicious. The dataset is loaded into a Pandas DataFrame and subjected to 
preprocessing. Categorical columns undergo encoding using LabelEncoder, while numerical 
columns are standardized with StandardScaler. Labels are converted to categorical format for 
model training. 

Three different neural network architectures are implemented: 

1. CNN-BiLSTM: A combination of Convolutional Neural Network (CNN) layers 
followed by Bidirectional Long Short-Term Memory (BiLSTM) layers. 

2. CNN-GRU: Similar to CNN-BiLSTM, but with Gated Recurrent Unit (GRU) layers 
instead of BiLSTM. 

3. CNN: A simple Convolutional Neural Network architecture. 

The dataset is split into training and testing sets. Each model is compiled with appropriate loss 
function, optimizer, and evaluation metrics. Models are trained on the training data with a 
specified number of epochs and batch size. After training, the models are evaluated on the 
testing set to assess performance metrics such as accuracy, precision, recall, and F1-score. 
Trained models are saved to disk in HDF5 format (.h5) using model.save method for future use 
without retraining. Models can be integrated into a production environment for real-time or 
batch processing of network traffic data. Continuous monitoring of the deployed models' 
performance is essential to ensure accuracy over time. Periodic retraining may be necessary to 
adapt to evolving attack patterns and changes in network behaviour. The trained models can be 
integrated into a Network Intrusion Detection System (NIDS) framework for automated 
detection of network attacks. Real-time network traffic can be passed through the deployed 
models for classification, enabling swift response to potential threats. Depending on the scale 
of the network and available computational resources, models can be optimized for 
performance and scalability using techniques such as distributed training or model 
quantization. 

4.1 Merits of Proposed System 

 Machine Learning for Evolving Threats: The system utilizes machine learning to 
identify complex and evolving attack signatures that may evade traditional rule-based 
methods. 

 High Accuracy with CNN-BiLSTM: By training a CNN-BiLSTM model on historical 
labeled data, the system achieves high accuracy in detecting various attack types. 

CNN-BiLSTM excels over a baseline CNN by: 

 Capturing long-term dependencies in network traffic data, crucial for 
identifying sophisticated attacks. 
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 Learning relationships between network events spread across time, 
beneficial for detecting multi-stage attacks. 

 Creating a richer feature representation through combined CNN and 
BiLSTM strengths, leading to better classification of normal and attack 
traffic. 

 Real-time Analysis and Response: The system performs real-time analysis, enabling 
prompt responses to potential attacks, minimizing the attacker's window of opportunity. 

 Flexibility and Customization: The system allows exploration of different models 
(e.g., CNN-GRU) and customization of features and attack classifications based on 
specific network environments and security needs. 

 Automated Alerting and Actions: The system provides automated alerting for 
security personnel and can initiate predefined response actions (e.g., blocking traffic, 
isolating systems) to mitigate attacks. 
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CHAPTER 5: 

SYSTEM DESIGN ARCHITECTURE 

5.1 Architecture Diagram 

Data Analysis: This is the initial step where the raw data is examined to understand its 
properties and suitability for the task. This might involve tasks like identifying the data, missing 
entries, and analysing data distribution. 

Data Preprocessing: In this stage, the raw data is transformed into a format that the machine 
learning model can understand and process effectively. This may involve techniques like 
tokenization, stemming, lemmatization, and vectorization. 

Model Splitting: Here, the pre-processed data is divided into two sets: a training set and a 
validation set. The training set is used to train the model, while the validation set is used to 
evaluate the model’s performance and prevent overfitting. 

Model Training: This is where the machine learning model learns from the training data. The 
model is iteratively adjusted to improve its performance on the training set. 

Model Validation: The performance of the trained model is assessed on the validation set. This 
helps identify if the model is overfitting on the training data and generalizes well to unseen 
data. 

Model Saving: If the model’s performance on the validation set meets the criteria, the model 
is then saved for future use. 

Prediction: Once a model is trained and saved, it can be used to make predictions on new, 
unseen data. 

Different model architectures, including CNN (Convolutional Neural Network), GRU (Gated 
Recurrent Unit), and CNN-BILSTM (Bidirectional Long Short-Term Memory) are used as the 
models for conducting the analysis. 

 
Fig 5.1 System Architecture 
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5.2 Use Case Diagram 

A use case diagram illustrates the interaction between a user/admin and a system. This diagram 
shows the different functionalities available to a user of a system. 

Register: This functionality allows a new user to create an account within the system. 

Login: This functionality allows a registered user to gain access to the system using their 
credentials. 

View User: This functionality allows a user to access and view their account information 
within the system. 

Upload: This functionality allows a user to upload data or files to the system. 

Log Out: This functionality allows a user to end their session and exit the system. 

The user can access the functionalities: Register, login, Upload and Log Out  

The admin can access the functionalities: Login, View User and Log Out 

 

Fig 5.2 Use Case Diagram 

5.3 Data Flow Diagrams 

5.3.1 Level 0 

Fig 5.3 Level 0 DFD 

A Level 0 DFD, which is a high-level view of a system that depicts the overall flow of data. 
This DFD shows a system with three main entities: a User, an Administrator, and a 
Vulnerability in an Internet of Things (IoT) device. 

Request 

Response 
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Request: The User initiates the process by requesting information from the Administrator. The 
nature of this request is not explicitly shown in the diagram but could be something like 
reporting a suspected vulnerability in an IoT device they manage. 

Response: The Administrator then processes the request and sends a response back to the User. 
Again, the nature of this response is not explicitly shown but could be information or guidance 
on how to address the reported vulnerability. 

 

5.3.2 Level 1 (Admin Side) 

Fig 5.4 Level 1 (Admin Side) DFD 

 A Level 1 DFD, which is a more detailed view of a system than a Level 0 DFD.  

User: The User entity is responsible for two main functions: 

Report Vulnerability: The user initiates the process by reporting a suspected vulnerability in an 
IoT device they manage. Details about the suspected vulnerability are captured in a report. 

View Response: The User can view the response sent by the Administrator regarding the 
reported vulnerability. 

Administrator: The Administrator entity is responsible for processing the information 
received from the User and sending a response. It has two main functions: 

Process Report: The Administrator receives and processes the report submitted by the User 
regarding the vulnerability in an IoT device. This likely involves tasks such as analyzing the 
report to assess the severity of the vulnerability. 

Send Response: The Administrator sends a response back to the User regarding the reported 
vulnerability. The response may include information on how to address the vulnerability or 
next steps the user should take. 

 

5.3.3 Level 1 (User Side) 

Fig 5.5 Level 1 (User Side) DFD 

A Level 1 Data Flow Diagram (DFD) for a user interacting with a database system. It depicts 
the flow of data as a user interacts with the system to view and potentially update information. 
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User: The User entity is responsible for initiating interactions with the system. The user has 
two main functions: 

Login: The user can log in to the system using their credentials. 

View/Update: Once logged in, the user can view and potentially update information stored in 
the database. 

System: The system entity is responsible for processing the user’s requests and interacting with 
the database. It has two main functions: 

Process Login: The system validates the user’s credentials upon login. 

Process View/Update: The system retrieves data from the database based on the user’s request 
and presents it to the user. It also allows the user to update the data and stores the changes back 
into the database. 

Database: The Database entity stores the system’s data. It interacts with the system to provide 
and receive data based on user requests. 

 

Data Flows: 

The arrows in the DFD represent the flow of data between the user, system, and database 
entities. Here’s a breakdown of the data flows depicted in the image: 

Login Credentials: The user submits their login credentials to the system. 

Login Validation: The system sends the login credentials to the database to verify the user’s 
identity. 

Login Response: The system sends a response to the user indicating whether the login was 
successful. 

Data Request: The user can submit a request to view or update data stored in the database. 

Data Retrieval: The system retrieves the requested data from the database. 

Data View: The system presents the retrieved data to the user. 

Data Update: The user can submit updates to the data. 

Data Update Storage: The system stores the updated data back into the database. 
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CHAPTER 6: 

SYSTEM REQUIREMENTS 

6.1 Software Requirements 

 Operating System:  Windows 10 or above                                                                                                                                           

 IDE: Notepad ++  

 Front End: HTML, CSS, js,  

 Back End: python, MYSQL, Django 

 Tool kit: XAMPP 

6.2 Hardware Requirements 

PROCESSOR: Intel Core i3 – 3220 (3.3 Ghz) or above 

RAM: 4 GB or above 

STORAGE: 512 GB or above 

OTHER: Keyboard and Mouse 
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CHAPTER 7: 

MODULE DESCRIPTION 

 

This analysis consists of 5 modules: 

1. Data Manipulation and Analysis 
2. Data Preprocessing  
3. Model Building and Training 
4. Model Evaluation  
5. Virtualization 

 

7.1 Module 1: Data Manipulation and Analysis: 
This module imports the pandas libraries using import pandas as pd. Pandas is used for working 
with tabular data. It provides Data Frames, which are essentially spreadsheets in Python, for 
organizing and manipulating data. 
pandas (pd): This module offers powerful data structures (DataFrames) for handling tabular 
data. It's used for:  

Reading the CSV file into a DataFrame (pd.read_csv) 

Displaying the DataFrame (print(df.head())) 

Selecting specific columns (df.select_dtypes) 

Saving a DataFrame to a CSV file (test_data.to_csv) 

numpy (np): This module provides numerical computing functionalities: 

Reshaping data for the Conv1D layer (X.values.reshape(...)) 

 

7.2 Module 2: Data Preprocessing: 
Data is set into arrays for mathematical computation of data, after which the data is split into 
two parts for training and testing sets which is crucial for evaluating the model. Here the data 
is standardised into numerical features for better training performance, the data is transformed 
from text lables to numerical values which is better understood by the models. 
sklearn.model_selection: This sub library from scikit-learn offers tools for splitting data into 
training and testing sets: 

train_test_split: Splits the data for training and testing (train_test_split) 

sklearn.preprocessing: This sub library from scikit-learn provides methods for data 
preprocessing: 

StandardScaler: Standardizes numerical features for better training performance 
(StandardScaler) 

LabelEncoder: Encodes categorical features into numerical values (LabelEncoder) 
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7.3 Module 3: Model Building and Training: 
In this module various files and functions are included for building and training the models that 
are used for this analysis in the cause of this research the models included are GRU, CNN and 
CNN-BiLSTM.  
tensorflow.keras: This module from TensorFlow offers deep learning functionalities: 

Sequential: Used to build a sequential neural network model (Sequential) 

Conv1D, MaxPooling1D: Used for convolutional layers and pooling in 1D data (Conv1D, 
MaxPooling1D) 

Bidirectional, LSTM, GRU, Dense, Dropout: Used for various neural network layers, including 
recurrent layers (Bidirectional, LSTM, GRU), fully connected layers (Dense), and dropout 
regularization (Dropout) 

Flatten: Flattens the data before feeding it to fully connected layers (Flatten) 

to_categorical: Converts categorical labels to one-hot encoding (to_categorical) 

model.compile: Compiles the model by specifying the optimizer, loss function, and metrics 
(model.compile) 

model.fit: Trains the model on the provided data (model.fit) 

model.save: Saves the trained model (model.save) 

load_model: Loads a pre-trained model (load_model) 

 

7.4 Module 4: Model Evaluation: 
Here we evaluate the performance of the models after they are trained. Functions that provide 
tools are used for providing a detailed breakdown of the model's performance on the testing 
set, including metrics like precision, recall, and F1-score. 
sklearn.metrics: This sublibrary from scikit-learn provides functions for evaluating machine 
learning models: 

classification_report: Prints a classification report summarizing model performance on the 
testing set (classification_report) 

 

7.5 Module 5: Visualization: 
It's used here to plot the training and validation loss/accuracy curves across training epochs, 
which helps understand how the model learns and performs during training. The code also 
saves these plots as images for further analysis. 
matplotlib.pyplot (plt): This module is used for creating plots and visualizations: 

Plotting loss and accuracy curves (plt.plot) 

Saving plots as images (plt.savefig) 
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CHAPTER: 8 

IMPLEMENTATION 

8.1 Steps to Use the Website 

Step 1:  The website is hosted in the url: http://127.0.0.1:8000/ 

Step 2: Once the url is opened, click on the registration option and fill the necessary details to 
create your account. 

 

 

Step 3: After Registration, click Login. Fill the details of the Login page to access your 
account. 
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Step 4:  After logging in, click on Upload found in the upper corner of the website. 

 

 

Step 5: Once the Upload page opens, click on the choose file option. 
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Step 6: Once the file manager is opened, select any one other test files which contains a 
vulnerability code. 

 

 

Step7: After the test file is uploaded, the website will show the vulnerability saved in the test 
file. 
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CHAPTER: 9 

RESULT ANALYSIS 

9.1 Training Accuracy  

 

Fig 9.1 Training Validation Accuracy CNN-BiLSTM 

The graph shows the relationship between training and validation accuracy of a CNN-BiLSTM 
model over epochs. The training accuracy (red line) increases steadily, reaching nearly 0.998. 
The validation accuracy (blue line) also increases, reaching a maximum of 0.992. This suggests 
the model is learning well and generalizing to unseen data. 

 

Fig 9.2 Training Validation Accuracy CNN 

The graph depicts the training and validation accuracy of a base CNN model over epochs. Both 
accuracy values (training in red, validation in blue) increase over training epochs, indicating 
the model is learning effectively. The validation accuracy reaches around 0.992, suggesting 
good generalizability to unseen data. 
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Fig 9.3 Training Validation accuracy GRU 

The graph shows training (red) and validation (blue) accuracy of a GRU model over epochs. 
Both lines rise with training epochs, indicating successful learning. Validation accuracy reaches 
around 0.99, suggesting the model generalizes well to unseen data. 

 

9.2 Training Loss 

+ 

Fig 9.4 Training validation Loss CNN-BiLSTM 

This graph depicts the training and validation loss of a Convolutional Neural Network with 
Bidirectional Long Short-Term Memory (CNN-BiLSTM) model. Ideally, both training (green) 
and validation (blue) loss decrease with epochs. A downward trend suggests the model is 
learning effectively. If validation loss increases while training loss keeps dropping, it might 
indicate overfitting. 
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Fig 9.5 Training Validation Loss CNN 

This graph depicts the training (red) and validation (blue) loss of a Base Convolutional Neural 
Network (CNN) model. Ideally, both loss values decrease with training epochs. The downward 
trend observed here suggests the model is learning effectively from the training data. The 
validation loss remains relatively low, indicating that the model generalizes well to unseen data. 

 

Fig 9.6 Training Validation Loss GRU 

This graph shows the training and validation loss of a Gated Recurrent Unit (GRU) model. The 
training loss (green) decreases steadily over epochs, indicating the model is learning the 
patterns in the training data. The validation loss (blue) also shows a downward trend, 
suggesting the model generalizes well to unseen data. 
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Fig 9.7 Accuracy Prediction Table 

The table shows the accuracy of three different predictor architectures for a natural language 
processing task. The architectures are CNN-BILSTM, GRU, and CNN. The CNN-BILSTM 
architecture has the highest accuracy, at 99.85%. The GRU architecture has an accuracy of 
99.79%, and the CNN architecture has an accuracy of 99.63%. 

In conclusion, the CNN-BILSTM architecture achieved the best performance among the three 
architectures tested. 
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CHAPTER: 10 

CONCLUSION 

 

In conclusion, this project endeavors to assess the efficacy of three distinct deep learning 
models—CNN, GRU, and CNN-BiLSTM—in the realm of network intrusion detection. By 
employing various neural network architectures, the objective is to discern which model yields 
the highest accuracy, hence serving as the optimal choice for detecting potential network 
intrusions. 

Upon conducting extensive experimentation and evaluation, it becomes evident that the CNN-
BiLSTM model emerges as the most promising candidate among the three. This conclusion is 
substantiated by the attained accuracy metrics, where CNN-BiLSTM outperforms both the 
CNN and GRU architectures. 

The provided code facilitates a comprehensive assessment of these models, encompassing 
essential stages such as data preprocessing, model construction, training, evaluation, and 
persistence. Notably, each model undergoes rigorous training on the dataset, followed by 
evaluation on a separate testing set to gauge its performance. 

CNN-BiLSTM, characterized by its integration of convolutional and bidirectional LSTM 
layers, achieves a remarkable accuracy rate of 99.8%. This outstanding performance 
underscores the effectiveness of leveraging sophisticated architectures capable of capturing 
both spatial and temporal dependencies within network traffic data. 

In summary, this project underscores the critical role of deep learning models, particularly 
CNN-BiLSTM, in bolstering network security through robust intrusion detection mechanisms. 
By leveraging advanced neural network architectures and meticulous evaluation 
methodologies, it lays the foundation for developing resilient and adaptive network intrusion 
detection systems capable of safeguarding against a myriad of cyber threats. 
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APPENDICES 

 

SOURCE CODE  

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

from sklearn.metrics import classification_report 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Conv1D, MaxPooling1D, Bidirectional, LSTM, Dense, 
Dropout, Flatten 

from tensorflow.keras.utils import to_categorical 

 

# Replace 'path/to/kddcup.data_10_percent' with the actual path to your file 

file_path = 'kddcup.data_10_percent' 

  

# Define column names based on the dataset documentation 

column_names = [ 

    'duration', 'protocol_type', 'service', 'flag', 'src_bytes', 'dst_bytes', 

    'land', 'wrong_fragment', 'urgent', 'hot', 'num_failed_logins', 

    'logged_in', 'num_compromised', 'root_shell', 'su_attempted', 

    'num_root', 'num_file_creations', 'num_shells', 'num_access_files', 

    'num_outbound_cmds', 'is_host_login', 'is_guest_login', 'count', 

    'srv_count', 'serror_rate', 'srv_serror_rate', 'rerror_rate', 

    'srv_rerror_rate', 'same_srv_rate', 'diff_srv_rate', 'srv_diff_host_rate', 

    'dst_host_count', 'dst_host_srv_count', 'dst_host_same_srv_rate', 

    'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate', 

    'dst_host_srv_diff_host_rate', 'dst_host_serror_rate', 

    'dst_host_srv_serror_rate', 'dst_host_rerror_rate', 

    'dst_host_srv_rerror_rate', 'label'] 



Vulnerability Analysis of IOT Sensors  
Using Deep Learning Technology                                                                                               BCA (CT & ISM) 

 
ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 36 

# Read the dataset into a pandas DataFrame 

df = pd.read_csv(file_path, header=None, names=column_names) 

  

# Display the first few rows of the DataFrame 

print(df.head()) 

 

unique_labels = df['label'].unique() 

print("Unique Labels:", unique_labels) 

 

# Assuming df is your DataFrame with non-integer valued columns 

non_integer_columns = df.select_dtypes(exclude=['int64', 'float64']).columns 

label_encoder = LabelEncoder() 

for column in non_integer_columns: 

    df[column] = label_encoder.fit_transform(df[column]) 

 

unique_labels = df['label'].unique() 

print("Unique Labels:", unique_labels) 

 

# Encode categorical labels 

label_encoder = LabelEncoder() 

df['label'] = label_encoder.fit_transform(df['label']) 

  

# Split the dataset into features and labels 

X = df.drop('label', axis=1) 

y = df['label'] 

  

# Standardize numerical features 

numerical_columns = X.select_dtypes(include=np.number).columns 

scaler = StandardScaler() 

X[numerical_columns] = scaler.fit_transform(X[numerical_columns]) 
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 # Convert labels to categorical format 

y = to_categorical(y) 

  

# Reshape the input data for the Conv1D layer 

X = X.values.reshape(X.shape[0], X.shape[1], 1) 

  

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

  

# Build the CNN-BiLSTM model 

model = Sequential() 

model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(X.shape[1], 1))) 

model.add(MaxPooling1D(pool_size=2)) 

model.add(Bidirectional(LSTM(50, activation='relu'))) 

model.add(Dropout(0.5)) 

model.add(Dense(23, activation='softmax'))  # Adjust the number of units based on your 
problem 

 

# Compile the model 

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 

  

# Train the model 

history_bilstm = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_split=0.2) 

  

# Evaluate the model on the test set 

y_pred = model.predict(X_test) 

y_pred_classes = np.argmax(y_pred, axis=1) 

y_test_classes = np.argmax(y_test, axis=1) 

print(classification_report(y_test_classes, y_pred_classes)) 

 

# Assuming 'model' is your trained Keras model 
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model.save('model_bilstm.h5') 

 

from sklearn.preprocessing import LabelEncoder 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import train_test_split 

from keras.utils import to_categorical 

from keras.models import Sequential 

from keras.layers import Conv1D, MaxPooling1D, GRU, Dropout, Dense 

  

# Encode categorical labels 

label_encoder = LabelEncoder() 

df['label'] = label_encoder.fit_transform(df['label']) 

  

# Split the dataset into features and labels 

X = df.drop('label', axis=1) 

y = df['label'] 

  

# Standardize numerical features 

numerical_columns = X.select_dtypes(include=np.number).columns 

scaler = StandardScaler() 

X[numerical_columns] = scaler.fit_transform(X[numerical_columns]) 

  

# Convert labels to categorical format 

y = to_categorical(y) 

  

# Reshape the input data for the Conv1D layer 

X = X.values.reshape(X.shape[0], X.shape[1], 1) 

  

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 
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# Build the CNN-GRU model 

model = Sequential() 

model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(X.shape[1], 1))) 

model.add(MaxPooling1D(pool_size=2)) 

model.add(GRU(50, activation='relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(23, activation='softmax'))  # Adjust the number of units based on your 
problem 

  

# Compile the model 

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 

  

# Print the model summary 

model.summary() 

  

# Train the model 

history_gru = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_data=(X_test, 
y_test)) 

 

# Assuming 'model' is your trained Keras model 

model.save('model_gru.h5') 

 

from sklearn.preprocessing import LabelEncoder 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import train_test_split 

from keras.utils import to_categorical 

from keras.models import Sequential 

from keras.layers import Conv1D, MaxPooling1D, Dropout, Flatten, Dense 

  

# Encode categorical labels 

label_encoder = LabelEncoder() 
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df['label'] = label_encoder.fit_transform(df['label']) 

  

# Split the dataset into features and labels 

X = df.drop('label', axis=1) 

y = df['label'] 

  

# Standardize numerical features 

numerical_columns = X.select_dtypes(include=np.number).columns 

scaler = StandardScaler() 

X[numerical_columns] = scaler.fit_transform(X[numerical_columns]) 

  

# Convert labels to categorical format 

y = to_categorical(y) 

  

# Reshape the input data for the Conv1D layer 

X = X.values.reshape(X.shape[0], X.shape[1], 1) 

  

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

  

# Build the CNN model 

model = Sequential() 

model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(X.shape[1], 1))) 

model.add(MaxPooling1D(pool_size=2)) 

model.add(Dropout(0.5)) 

model.add(Flatten()) 

model.add(Dense(50, activation='relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(23, activation='softmax'))  # Adjust the number of units based on your 
problem 
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# Compile the model 

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 

  

# Print the model summary 

model.summary() 

  

# Train the model 

history_cnn = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_data=(X_test, 
y_test)) 

 

# Assuming 'model' is your trained Keras model 

model.save('model_cnn.h5') 

 

import matplotlib.pyplot as plt 

  

# Plot the loss and accuracy curves for training and validation  

fig, ax = plt.subplots(1, 1, figsize=(10, 8))  # Create a 3x1 grid of subplots 

  

# First subplot: Loss 

ax.plot(history_bilstm.history['loss'], color='b', label="Training loss (BiLSTM)") 

ax.plot(history_bilstm.history['val_loss'], color='r', label="Validation loss (BiLSTM)") 

ax.set_title("Training and Validation Loss") 

ax.set_xlabel("Epochs") 

ax.set_ylabel("Loss") 

ax.legend(loc='best') 

  

# Save the figure 

plt.savefig("training_validation_loss_Bilstm.png") 

import matplotlib.pyplot as plt 

# Plot the loss and accuracy curves for training and validation  

fig, ax = plt.subplots(1, 1, figsize=(10, 8))  # Create a 3x1 grid of subplots 
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# First subplot: Loss 

ax.plot(history_gru.history['loss'], color='b', label="Training loss (GRU)") 

ax.plot(history_gru.history['val_loss'], color='r', label="Validation loss (GRU)") 

ax.set_title("Training and Validation Loss") 

ax.set_xlabel("Epochs") 

ax.set_ylabel("Loss") 

ax.legend(loc='best') 

  

# Save the figure 

plt.savefig("training_validation_loss_gru.png") 

 

import matplotlib.pyplot as plt 

  

# Plot the loss and accuracy curves for training and validation  

fig, ax = plt.subplots(1, 1, figsize=(10, 8))  # Create a 3x1 grid of subplots 

  

# First subplot: Loss 

ax.plot(history_cnn.history['loss'], color='b', label="Training loss (CNN)") 

ax.plot(history_cnn.history['val_loss'], color='r', label="Validation loss (CNN)") 

ax.set_title("Training and Validation Loss") 

ax.set_xlabel("Epochs") 

ax.set_ylabel("Loss") 

ax.legend(loc='best') 

  

# Save the figure 

plt.savefig("training_validation_loss_cnn.png") 

import matplotlib.pyplot as plt 

fig, ax = plt.subplots(1, 1, figsize=(10, 8)) 

ax.plot(history_bilstm.history['acc'], color='b', label="Training accuracy (BiLSTM)") 
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ax.plot(history_bilstm.history['val_acc'], color='r', label="Validation accuracy (BiLSTM)") 

ax.set_title("Training and Validation Accuracy") 

ax.set_xlabel("Epochs") 

ax.set_ylabel("Accuracy") 

ax.legend(loc='best') 

plt.savefig("training_validation_accuracy_bILSTM.png") 

 

import matplotlib.pyplot as plt 

fig, ax = plt.subplots(1, 1, figsize=(10, 8)) 

ax.plot(history_gru.history['acc'], color='b', label="Training accuracy (GRU)") 

ax.plot(history_gru.history['val_acc'], color='r', label="Validation accuracy (GRU)") 

ax.set_title("Training and Validation Accuracy") 

ax.set_xlabel("Epochs") 

ax.set_ylabel("Accuracy") 

ax.legend(loc='best') 

plt.savefig("training_validation_accuracy_GRU.png") 

 

import matplotlib.pyplot as plt 

fig, ax = plt.subplots(1, 1, figsize=(10, 8)) 

ax.plot(history_cnn.history['acc'], color='b', label="Training accuracy (CNN)") 

ax.plot(history_cnn.history['val_acc'], color='r', label="Validation accuracy (CNN)") 

ax.set_title("Training and Validation Accuracy") 

ax.set_xlabel("Epochs") 

ax.set_ylabel("Accuracy") 

ax.legend(loc='best') 

plt.savefig("training_validation_accuracy_cnn.png") 

 

from tensorflow.keras.models import load_model 

loaded_model = load_model('model_bilstm.h5') 
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# Save the 20th row to a new DataFrame for testing 

test_data = df.iloc[[116000]] 

  

# Save the test data to a CSV file 

test_data.to_csv('test_data1.csv', index=False) 

  

# Display the saved test data 

print("Test Data:") 

print(test_data) 

 

import pandas as pd 

import numpy as np 

from tensorflow.keras.models import load_model 

  

# Load the pre-trained model 

model = load_model('model_bilstm.h5')  # Replace with the actual path to your trained model 

  

# Load the test data 

test_data = pd.read_csv('test_data.csv')  # Replace with the actual path to your test data 

  

# Extract features and labels from the test data 

X_test = test_data.drop('label', axis=1) 

y_test = test_data['label'] 

  

# If label encoding was used during training, you may need to encode the labels 

# label_encoder = LabelEncoder() 

# y_test = label_encoder.transform(y_test) 

  

# Standardize numerical features (if used during training) 

# X_test[numerical_columns] = scaler.transform(X_test[numerical_columns]) 
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# Assuming you've reshaped the input data during training 

X_test = X_test.values.reshape(X_test.shape[0], X_test.shape[1], 1) 

  

# Make predictions 

predictions = model.predict(X_test) 

  

# Convert predictions to class labels 

predicted_class_indices = np.argmax(predictions, axis=1) 

  

# Map indices to original class labels 

# inverse_transform if label encoding was used during training 

# predicted_labels = label_encoder.inverse_transform(predicted_class_indices) 

  

# Print predictions 

print("Predicted Class Indices:", predicted_class_indices) 

# print("Predicted Labels:", predicted_labels) 

 

test_data1 = df.iloc[[29]] 

test_data1.to_csv('test.csv', index=False) 
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