
VULNERABILITY ANALYSIS OF IOT SENSORS USING DEEP
LEARNING TECHNOLOGY

ST. TERESA’S COLLEGE (AUTONOMOUS)
AFFILIATED TO MAHATMA GANDHI UNIVERSITY

PROJECT REPORT

In partial fulfilment of the requirements for the award of the degree of

BCA
(CLOUD TECHNOLOGY AND INFORMATION SECURITY

MANAGEMENT)

By

ASHWITHA SAJEEV – SB21BCA004
&

SHINU MARY JOHN – SB21BCA033

III DC BCA (CLOUD TECHNOLOGY AND INFORMATION SECURITY
MANAGEMENT)

Under the guidance of
MS. VEENA ANTONY

DEPARTMENT OF BCA (CLOUD TECHNOLOGY & INFORMATION
SYSTEM MANAGEMENT)

MARCH 2024

VULNERABILITY ANALYSIS OF IOT SENSORS USING DEEP
LEARNING TECHNOLOGY

ST. TERESA’S COLLEGE (AUTONOMOUS)
AFFILIATED TO MAHATMA GANDHI UNIVERSITY

PROJECT REPORT

In partial fulfilment of the requirements for the award of the degree of

BCA
(CLOUD TECHNOLOGY AND INFORMATION SECURITY

MANAGEMENT)

By

ASHWITHA SAJEEV – SB21BCA004
&

SHINU MARY JOHN – SB21BCA033

III DC BCA (CLOUD TECHNOLOGY AND INFORMATION SECURITY
MANAGEMENT)

Under the guidance of
MS. VEENA ANTONY

DEPARTMENT OF BCA (CLOUD TECHNOLOGY & INFORMATION
SYSTEM MANAGEMENT)

MARCH 2024

DECLARATION

We, undersigned, hereby declare that the project report, ‘VULNERABILITY ANALYSIS

OF IOT SENSORS USING DEEP LEARNING TECHNOLOGY”, submitted for partial

fulfilment of the requirements for the award of degree of BCA (Cloud Technology and

Information Security Management) at St. Teresa’s College (Autonomous), Ernakulam

(Affiliated to Mahatma Gandhi University), Kerala, is a Bonafede work done by us under the

supervision of Ms. Veena Antony. This submission represents our ideas in our own words

where ideas or words of others have not been included. We have adequately and accurately

cited and referenced the sources. We also declare that we have adhered to the ethics of

academic honesty and integrity and have not misrepresented or fabricated any data idea fact or

source in our submission. We understand that any violation of the above will be a cause for

disciplinary action by the institute and/or the University and can also evoke penal action from

the sources which have thus not been properly cited or from whom proper permission has not

been obtained. This report has not been previously formed the basis for the award of any degree,

diploma or similar title of any other University.

Ernakulam Ashwitha Sajeev-SB21BCA004

March 2024 Shinu Mary John-SB21BCA033

 ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM

 BCA (CLOUD TECHNOLOGY AND INFORMATION SECURITY

MANAGEMENT)

 DEPARTMENT OF BCA (CLOUD TECHNOLOGY & INFORMATION SYSTEM

MANAGEMENT)

CERTIFICATE

This is to certify that the report entitled “VULNERABILITY ANALYSIS OF IOT

SENSORS USING DEEP LEARNING TECHNOLOGY”, submitted by Ashwitha Sajeev

and Shinu Mary John to the Mahatma Gandhi University in partial fulfilment of the

requirements for the award of the Degree of BCA (Cloud Technology and Information Security

Management) is a Bonafede record of the project work carried out by them under our guidance

and supervision. This report in any form has not been submitted to any other University or

Institute for any purpose.

Ms. ARCHANA MENON P

Head of the department

Ms. VEENA ANTONY

Internal Supervisor External Supervisor

ACKNOWLEDGEMENT

First and foremost, we thank God Almighty for his blessings. We take this opportunity to

express our gratitude to all those who helped us in completing this project successfully. I wish

to express our sincere gratitude to the Manager Rev. Dr. Sr. Vinitha CSST and the Principal

Dr. Alphonsa Vijaya Joseph for providing all the facilities.

We express our sincere gratitude towards the Head of the department Ms. Archana Menon P

for her support. We deeply express sincere thanks to our project guide Ms. Veena Antony for

her proper guidance and support throughout the project work.

We are indebted to our beloved teachers whose cooperation and suggestions throughout the

project helped immensely. We thank all our friends and classmates for their support.

We convey our hearty thanks to our parents for their moral support, suggestions and

encouragement.

ABSTRACT

The proliferation of Internet of Things (IoT) sensors has opened doors to novel applications
but also introduced new security challenges. These sensors are susceptible to vulnerabilities
that could be exploited for malicious purposes. This study delves into the effectiveness of Deep
Learning (DL) algorithms in analyzing vulnerabilities within IoT sensors. We propose a
framework centred on Convolutional Neural Networks (CNNs) for intrusion detection within
IoT networks. The framework investigates three distinct CNN architectures to determine the
most accurate approach for vulnerability analysis:

1. Baseline CNN: This model employs a standard CNN architecture for network traffic
classification.

2. CNN-BiLSTM: This variation incorporates Bidirectional Long Short-Term Memory
(BiLSTM) layers after the convolutional layers. BiLSTM layers excel at capturing
sequential dependencies within data, potentially leading to higher accuracy by
considering the temporal nature of network traffic.

3. CNN-GRU: This model utilizes Gated Recurrent Unit (GRU) layers instead of
BiLSTMs. GRUs offer similar functionality but with a simpler architecture.

The KDD Cup 99 dataset, a well-established benchmark for intrusion detection, serves as the
foundation for training and evaluating these models. The code implements essential data
preprocessing steps:

 Label Encoding: Categorical features are converted into numerical representations for
compatibility with the CNN architecture.

 Feature Standardization: Numerical features are normalized using standardization
techniques to ensure all features contribute equally during training.

 Reshaping for CNN Layer: The data is reshaped into a format suitable for the CNN's
convolutional operations.

Following preprocessing, each model undergoes training and evaluation. Their performance is
primarily compared based on their accuracy in classifying diverse network traffic patterns into
distinct attack categories.

By meticulously comparing the accuracy of these three CNN architectures, this study aims to
identify the most accurate approach for vulnerability analysis in IoT sensor networks.
Additionally, the code demonstrates how to load a pre-trained model and make predictions on
new, unseen sensor data. This practical example showcases the potential application of the
most accurate DL model in real-world IoT security scenarios.

This research contributes to the ongoing exploration of DL for enhancing IoT security. By
comparing the accuracy of CNN, CNN-BiLSTM, and CNN-GRU architectures in intrusion
detection, we offer valuable insights for securing sensor-based networks and mitigating
potential vulnerabilities. Ultimately, this work aims to identify the most accurate DL
architecture for intrusion detection, leading to more robust security solutions for IoT sensor
networks.

TABLE OF CONTENTS

Chapter 1: INTRODUCTION.…………………………………………………….….……. 1

1.1 Background………………….……………………………...……….….……….... 1

 1.2 Internet of Things...…………………………...……………………………………1

1.3 Deep Learning…………………………………………….……………….……….1
 1.3.1 Parts of a Neural Network…………………………………………….….2
 1.3.2 Deep Learning Algorithms………………………………………...….….4
 1.3.3 Convolutional Neural Network……………………………………….….4
 1.3.4 Recurrent Neural Network……………………………………………….6
 1.3.5 Long Short-Term Memory……………………………………………….7
 1.3.6 Gated Recurrent Units……………………………………………………8

1.4 Deep Learning Algorithms Used in Project……………………...………….……...9
 1.4.1 Convolutional Neural Network……………...…………………………...9
 1.4.2 Convolutional Neural Network – Bidirectional…………………………10

 Long Short-Term Memory
1.4.3 Gated Recurrent Unit…………………………………………………...11

1.5 Project Objective………………………………………………………………….12

Chapter 2: LITERATURE SURVEY…………….…………….……………………….….13

Chapter 3: EXISTING SYSTEM……………..……………........…..……………………..15

 3.1 Objective……………………………………………………………………….…15

 3.2 Methodology……………………………………………………………………...15

 3.3 Result……………………………………………………………………………..16

 3.4 Future Scope……………………………………………………………………...17

Chapter 4: PROPOSED SYSTEM……………..…………….......…..…………...………..18

 4.1 Merits of Proposed System…………………………………………………….…18

Chapter 5: SYSTEM DESIGN ARCHITECTURE……….....…………………………... 18

 5.1 Architecture Diagram………………….…………………...……….….………....20

5.2 Use Case Diagram………………………………………………………………...21

5.3.1 Data Flow Diagrams……………………………………………………………21
 5.3.1 Level 0 Data Flow Diagram…………………………………………….21
 5.3.2 Level 1 Data Flow Diagram (Admin Side) …………………………......22
 5.3.3 Level 1 Data Flow Diagram (User Side)….…………………………….21

Chapter 6: SYSTEM REQUIREMENTS………………………………......……….…..... 24

 6.1 Software Requirements…………………………………………………………...24

 6.2 Hardware Requirements………………………………………………………….24

Chapter 7: MODULE DESCRIPTION ………………………………………………..…..25

 7.1 Module 1: Data Manipulation and Analysis………………………………………25

 7.2 Module 2: Data Preprocessing……………………………………………………25

 7.3 Module 3: Model Building and Training…………………………………………26

 7.4 Module 4: Model Evaluation……………………………………………………...26

 7.5 Module 5: Visualization…………………………………………………………..26

Chapter 8: IMPLEMENTATION..……………………………………...……………...…. 13

 8.1 Steps to Use the Website…………………………………………………………..27

Chapter 9: RESULT ANALYSIS...……………………………………...……………...…. 30

 9.1 Training Accuracy ….……………………………………………………………30

 9.2 Training Loss……………….……………………………………………………31

Chapter 10: CONCLUSION……....………..…………………………...……………...…. 34

APPENDICES………………………………………………………………………………35

REFERENCES …………………………………………………..……….………………...46

LIST OF FIGURES

SL NO

FIGURE NO

FIGURE DESCRIPTION

PAGE NO

1

1.1

The Similarity Between Neurons and
Neural Networks

2

2

1.2

Parts of a neural network

2

3

1.3

Structure of a CNN

5

4

1.4

Structure of RNN

6

5

1.5

Long Short-Term Memory

7

6

1.6

Gated Recurrent Unit Architecture

8

7

3.1

Result Analysis of PdM System

16

8

5.1

System Architecture

20

9

5.2

Use Case Diagram

21

10

5.3

Level 0 DFD

21

11

5.4

Level 1 (Admin Side) DFD

22

12

5.5

Level 1 (User Side) DFD

22

13

9.1

Training Validation Accuracy CNN-
BiLSTM

30

14

9.2

Training Validation Accuracy CNN

30

15

9.3

Training Validation accuracy GRU

31

16

9.4

Training validation Loss CNN-
BiLSTM

31

17

9.5

Training Validation Loss CNN

32

18

9.6

Training Validation Loss GRU

32

19

9.7

Accuracy Prediction Table

33

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 1

CHAPTER 1:

INTRODUCTION

1.1 Background

The objective of the project is to develop and evaluate machine learning models for detecting
and analysing vulnerabilities in IoT sensor networks.

The code implements three different deep learning architectures: CNN-BiLSTM, CNN-GRU,
and CNN. These architectures are applied to a dataset containing network traffic data,
specifically the KDD Cup 10 percent dataset, which is a part of the commonly used dataset for
network intrusion detection tasks. The KDDCup99 is the original IoT net-work intrusion
dataset that was created in 1999.

1.2 Internet of Things

The Internet of Things (IoT) has revolutionized various aspects of our lives, connecting
everyday objects to the internet and enabling them to collect and transmit data. However, the
growing prevalence of IoT sensors introduces significant security challenges. These sensors
are often resource-constrained and may have inherent vulnerabilities that malicious actors can
exploit to gain unauthorized access, disrupt operations, or steal sensitive data.

The Internet of Things (IoT) refers to everyday objects that are equipped with sensors and
software, allowing them to collect and exchange data over the internet. This creates a network
of connected devices that can automate tasks and improve efficiency. However, IoT faces some
challenges such as security, standardization and privacy. We can address these challenges
by implementing stronger encryption, regular software updates, and secure authentication
methods that can improve IoT security, establishing industry-wide standards for
communication protocols and data formats can ensure better compatibility between devices
and clear user consent and data anonymization practices can help protect user privacy in the
IoT world.

1.3 Deep Learning

Deep learning is a powerful subfield of machine learning inspired by the structure and function
of the human brain. It uses artificial neural networks with multiple layers to learn complex
patterns from data. Unlike traditional machine learning algorithms that require manual feature
extraction, deep learning excels at automatically extracting features from raw data like images,
text, or sound.

In technical terms, deep learning uses something called "neural networks," which are inspired
by the human brain. These networks consist of layers of interconnected nodes that process
information. The more layers, the "deeper" the network, allowing it to learn more complex
features and perform more sophisticated tasks.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 2

Fig 1.1 The Similarity Between Neurons and Neural Networks

1.3.1 Parts of a Neural Network

Fig 1.2 Parts of a neural network

A neural network typically consists of several interconnected layers, each performing specific
operations on the input data. Here are the main parts of a neural network:

1. Input Layer:

 The input layer is where the data is fed into the network.

 Each neuron in the input layer represents a feature or attribute of the input data.

 The number of neurons in the input layer corresponds to the dimensionality of
the input data.

2. Hidden Layers:

 Hidden layers are the intermediate layers between the input and output layers.

 Each hidden layer contains a set of neurons, and the number of hidden layers
and neurons per layer can vary based on the complexity of the problem.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 3

 Hidden layers are responsible for learning and extracting features from the input
data through nonlinear transformations.

3. Weights and Biases:

 Each connection between neurons in adjacent layers is associated with a weight.

 Weights determine the strength of the connection between neurons and are
adjusted during the training process to minimize the error.

 Biases are additional parameters added to each neuron that allow the network
to learn more complex functions.

4. Activation Function:

 The activation function introduces nonlinearity into the network, enabling it to
learn complex patterns and relationships in the data.

 Common activation functions include sigmoid, tanh, ReLU (Rectified Linear
Unit), and softmax (for classification tasks).

5. Output Layer:

 The output layer produces the final predictions or outputs of the network.

 The number of neurons in the output layer depends on the nature of the task
(e.g., regression, binary classification, or multi-class classification).

 The activation function used in the output layer depends on the type of problem
being solved (e.g., sigmoid for binary classification, softmax for multi-class
classification).

6. Loss Function:

 The loss function measures the difference between the predicted output and the
actual target output.

 It serves as a measure of how well the model is performing during training.

 The goal of training is to minimize the loss function by adjusting the network's
weights and biases.

7. Optimizer:

 The optimizer is responsible for updating the weights and biases of the network
during the training process.

 It uses the gradients of the loss function with respect to the network parameters
to determine how to adjust them in order to minimize the loss.

These are the key components of a neural network architecture.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 4

1.3.2 Deep Learning Algorithms

Here's a brief description of some commonly used deep learning algorithms:

1. Convolutional Neural Networks (CNNs):

 CNNs are primarily used for tasks involving image recognition and processing.

 They consist of convolutional layers that apply filters to input data, followed by
pooling layers to reduce dimensionality.

 CNNs are highly effective in capturing spatial hierarchies of features in images.

2. Recurrent Neural Networks (RNNs):

 RNNs are designed to handle sequential data where the order of elements
matters, such as time series data or natural language.

 They have connections that form directed cycles, allowing them to retain
information over time.

 However, traditional RNNs suffer from the vanishing gradient problem, limiting
their ability to capture long-term dependencies.

3. Long Short-Term Memory (LSTM):

 LSTMs are a type of RNN architecture designed to address the vanishing
gradient problem.

 They incorporate specialized memory cells and gating mechanisms to
selectively remember or forget information over long sequences.

 LSTMs have been widely used in tasks involving sequential data processing,
such as language modelling, machine translation, and speech recognition.

4. Gated Recurrent Units (GRUs):

 GRUs are another variant of the RNN architecture, similar to LSTMs but with
a simplified gating mechanism.

 They have fewer parameters compared to LSTMs, making them
computationally less expensive and easier to train.

 GRUs are suitable for tasks requiring memory over long sequences, such as
language modelling and sentiment analysis.

These algorithms, among others, form the backbone of deep learning and have been
instrumental in driving advancements in artificial intelligence across various industries and
applications.

1.3.3 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a powerful type of deep learning algorithm
specifically designed for image recognition and analysis. They excel at finding patterns in grid-
like data, making them the go-to choice for various computer vision tasks.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 5

Structure of a CNN:

Fig 1.3 Structure of a CNN

A CNN architecture typically consists of three main types of layers:

1. Convolutional Layers: These layers are the heart of a CNN. They apply filters (also
called kernels) to the input image, extracting features like edges, shapes, and textures.
The filter slides across the image, performing element-wise multiplication with the
underlying data and generating a feature map.

2. Pooling Layers: These layers down sample the feature maps produced by the
convolutional layers. This reduces the dimensionality of the data, making it
computationally efficient and helping to control overfitting. Common pooling
techniques include max pooling, which selects the maximum value from a specific
region of the feature map.

3. Fully-Connected Layers: These layers function similarly to traditional neural
networks, taking the outputs from the pooling layers and performing classifications.
They use activation functions to introduce non-linearity and help the network learn
complex relationships between the features.

How CNNs Learn:

 Training: CNNs are trained on large datasets of labelled images. During training, the
network adjusts the weights associated with its filters and neurons based on the
difference between the predicted output and the actual label of the image.

 Backpropagation: This is a critical training technique used to adjust the weights in the
network. Errors are propagated backward through the layers, allowing the network to
learn from its mistakes and improve its feature extraction and classification capabilities.

Applications of CNNs:

 Image Classification: Recognizing objects, animals, or scenes within images.

 Object Detection: Locating and identifying specific objects within an image.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 6

 Image Segmentation: Dividing an image into different regions corresponding to
specific objects or features.

 Facial Recognition: Identifying individuals based on their facial features.

1.3.4 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a powerful type of deep learning architecture designed
to handle sequential data. Unlike traditional neural networks that process individual data points,
RNNs excel at analysing sequences where the order of elements matters. This makes them good
for tasks like language translation, speech recognition, and time series forecasting.

RNN Architecture:

An RNN is built on repeating modules called cells. Each cell processes a single element from
the sequence and updates its hidden state based on two factors: the current input (the element
itself) and the previous hidden state (the network's memory of the sequence so far). This
updated hidden state is then passed on to the next cell in the sequence, allowing information to
flow and accumulate context throughout the network.

Fig 1.4 Structure of RNN

Imagine an RNN processing a sentence word by word. The first word becomes the current
input, and the hidden state is initialized. As the network processes each subsequent word, the
current input and the previous hidden state (containing information from prior words) are used
to update the hidden state. This allows the network to consider the context of previous words
when interpreting the current word.

Applications of RNNs:

 Machine Translation: Translating text from one language to another, considering the
context of the entire sentence.

 Speech Recognition: Converting spoken language into text, accounting for the order
of words within a speech pattern.

 Text Generation: Generating text that follows a specific style or language pattern.

 Time Series Forecasting: Predicting future values in a time series based on historical
data.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 7

1.3.5 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a specialized type of Recurrent Neural
Network (RNN) designed to address a significant limitation of traditional RNNs: the vanishing
gradient problem. This problem hinders RNNs' ability to learn long-term dependencies within
sequential data. LSTMs overcome this limitation, making them a powerful tool for tasks
involving sequences like text, speech, and time series data.

Fig 1.5 Long Short-Term Memory

The LSTM Architecture:

LSTMs address this challenge by introducing a gating mechanism that controls the flow of
information within the network. This mechanism consists of several important components:

 Cell State: This acts as the network's memory, carrying information across different
time steps.

 Forget Gate: This gate decides what information to forget from the cell state of the
previous time step. It considers the new input and the previous cell state, ultimately
outputting values between 0 and 1. A value closer to 1 signifies retaining more
information, while 0 indicates forgetting.

 Input Gate: This gate determines what new information to store in the cell state. It
analyses the current input and the previous cell state, outputting values between 0 and
1.

 Output Gate: This gate controls what information from the cell state to output as part
of the hidden state (the network's output at a specific time step).

How LSTMs Learn:

 Information Flow: During training, the LSTM processes the sequence one element at
a time. At each step, the forget gate, input gate, and output gate determine how
information flows through the cell state and hidden state.

 Backpropagation: Similar to other neural networks, LSTMs utilize backpropagation
to adjust their internal weights and learn from errors.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 8

Applications of LSTMs:

 Machine Translation: Translating text from one language to another while considering
the context of the entire sentence.

 Speech Recognition: Converting spoken language into text, accounting for long-term
dependencies within speech patterns.

 Time Series Forecasting: Predicting future values in a time series based on historical
data, such as stock prices or weather patterns.

 Anomaly Detection: Identifying unusual patterns within sequences, useful for fraud
detection or system monitoring.

1.3.6 Gated Recurrent Units (GRU)

Gated Recurrent Units (GRUs) are a type of RNN that addresses the vanishing gradient
problem by introducing a gating mechanism similar to LSTMs. This mechanism allows GRUs
to control the flow of information within the network and focus on the most relevant parts of
the sequence.

Fig 1.6 Gated Recurrent Unit Architecture

GRU Architecture:

A GRU cell resembles an RNN cell with the addition of these gating mechanisms. The update
gate and reset gate control the flow of information through the hidden state, mitigating the
vanishing gradient problem and allowing GRUs to learn long-term dependencies more
effectively than traditional RNNs.

Similar to LSTMs, GRUs utilize gates to regulate information flow. However, GRUs have a
simpler architecture compared to LSTMs, using a single update gate and a reset gate:

 Update Gate: This gate decides how much of the previous hidden state information to
keep and how much new information from the current input to incorporate.

 Reset Gate: This gate determines which parts of the previous hidden state are still
relevant and should be carried forward.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 9

Applications of GRUs:

 Similar to RNNs: GRUs can be applied to various tasks involving sequential data, such
as machine translation, speech recognition, and text generation.

 Potentially Faster Training: Due to their simpler architecture, GRUs can sometimes
train faster than LSTMs on specific tasks.

1.4 Deep Learning Algorithms Used in Project

1.4.1 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a class of deep neural networks particularly well-
suited for tasks involving image recognition and processing. They have played a pivotal role
in advancing computer vision applications, including object detection, image classification,
and semantic segmentation.

Key Components:

 Convolutional Layers: CNNs utilize convolutional layers to extract features from
input images. These layers apply learnable filters to small regions of the input image,
capturing patterns such as edges, textures, and shapes. Through successive
convolutions, deeper layers can learn more abstract and complex features.

 Pooling Layers: Pooling layers are used to down sample feature maps produced by
convolutional layers, reducing spatial dimensions and computational complexity while
preserving important features. Common pooling operations include max pooling and
average pooling.

 Activation Functions: Non-linear activation functions, such as ReLU (Rectified
Linear Unit), are applied to the output of convolutional and pooling layers. These
functions introduce non-linearity into the network, enabling it to learn complex
mappings between input and output.

 Fully Connected Layers: Following the convolutional and pooling layers, fully
connected layers perform high-level reasoning and decision-making. These layers
integrate features learned from previous layers and map them to the output classes or
labels.

Applications:

CNNs have demonstrated remarkable performance in various computer vision tasks, including:

 Image Classification: Assigning labels or categories to input images.

 Object Detection: Identifying and localizing objects within images or videos.

 Semantic Segmentation: Pixel-wise classification of objects and regions in images.

 Facial Recognition: Recognizing and verifying faces in images or videos.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 10

 Medical Image Analysis: Analysing medical images for diagnosis and treatment
planning.

1.4.2 CNN-BiLSTM (Convolutional Neural Network - Bidirectional Long Short-Term
Memory)

CNN-BiLSTM is a hybrid deep learning architecture that combines the strengths of
Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory
(BiLSTM) networks. This architecture is specifically designed for processing sequential data
with spatial and temporal dependencies, such as time series data and sequences of features
extracted from images.

Key Components:

1. Convolutional Layers: The CNN component of the architecture extracts spatial
features from input data. Convolutional layers apply a series of learnable filters to input
sequences, capturing local patterns and spatial hierarchies. These layers are effective at
feature extraction and dimensionality reduction.

2. Bidirectional LSTM Layers: The BiLSTM component processes the output of the
convolutional layers in both forward and backward directions. Bidirectional LSTMs
consist of two LSTM networks: one processes the input sequence from the beginning
to the end, while the other processes it in reverse. This enables the model to capture
both past and future context for each time step, allowing for a better understanding of
temporal dependencies.

3. Pooling Layers (Optional): Pooling layers may be incorporated after the convolutional
layers to down sample feature maps and reduce computational complexity while
preserving important features.

4. Fully Connected Layers: Following the CNN-BiLSTM layers, fully connected layers
perform high-level reasoning and decision-making. These layers integrate features
learned from the preceding layers and map them to the output classes or labels.

Training and Optimization:

Training CNN-BiLSTM involves feeding the network with labelled sequential data, computing
the loss between predicted and true labels, and optimizing network parameters (weights and
biases) using backpropagation and optimization algorithms such as stochastic gradient descent
(SGD) or Adam.

Applications:

CNN-BiLSTM architectures have been successfully applied to various sequential data analysis
tasks, including:

 Time Series Forecasting: Predicting future values in sequential data, such as financial
time series or sensor readings.

 Video Analysis: Analysing sequences of frames in videos for action recognition, scene
understanding, and video captioning.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 11

 Natural Language Processing: Processing sequences of words or characters for tasks
such as sentiment analysis, machine translation, and named entity recognition.

1.4.3 GRU (Gated Recurrent Unit)

Gated Recurrent Unit (GRU) is a type of recurrent neural network (RNN) architecture designed
to address the limitations of traditional RNNs, such as vanishing gradients and difficulty in
capturing long-term dependencies. GRUs are particularly effective for sequential data
processing tasks where information needs to be retained over multiple time steps.

Key Components:

1. Update Gate: The update gate in GRU determines how much of the previous memory
should be retained and how much of the new information should be incorporated. It
computes the relevance of the previous memory and the new input at each time step.

2. Reset Gate: The reset gate controls the degree to which the previous memory should
be forgotten or reset. It decides which parts of the previous memory are outdated and
should be ignored.

3. Candidate Activation: The candidate activation computes the new candidate memory
based on the current input and the reset gate. It combines the new input with the relevant
parts of the previous memory.

4. Hidden State: The hidden state of the GRU represents the current memory state or
context. It is updated at each time step based on the update gate and the candidate
activation.

Training and Optimization:

During training, GRUs learn to capture temporal dependencies and patterns in sequential data.
The training process involves feeding the network with labeled sequential data, computing the
loss between predicted and true labels, and optimizing network parameters (weights and biases)
using backpropagation and optimization algorithms such as stochastic gradient descent (SGD)
or Adam.

Applications:

GRUs have been successfully applied to various sequential data processing tasks, including:

 Natural Language Processing: Processing sequences of words or characters for tasks
such as language modelling, machine translation, and sentiment analysis.

 Time Series Forecasting: Predicting future values in sequential data, such as stock
prices, weather data, or sensor readings.

 Speech Recognition: Converting speech signals into text for tasks such as voice
transcription and virtual assistants.

 Video Analysis: Analysing sequences of frames in videos for action recognition, scene
understanding, and video captioning.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 12

1.5 Project Objective

The Internet of Things (IoT) has revolutionized various aspects of our lives, connecting
everyday objects to the Internet and enabling them to collect and transmit data. However, the
growing prevalence of IoT sensors introduces significant security challenges. These sensors
are often resource-constrained and may have inherent vulnerabilities that malicious actors can
exploit to gain unauthorized access, disrupt operations, or steal sensitive data.

This project investigates the effectiveness of Deep Learning (DL) algorithms for vulnerability
analysis in IoT sensors. DL has emerged as a powerful tool for network intrusion detection,
and this project explores its potential for securing sensor-based networks. We propose a
framework centred on Convolutional Neural Networks (CNNs) for intrusion detection within
IoT networks.

The project compares the performance of three distinct CNN architectures:

Baseline CNN: This model employs a standard CNN architecture for network traffic
classification.

CNN-BiLSTM: This variation incorporates Bidirectional Long Short-Term Memory
(BiLSTM) layers after the convolutional layers. BiLSTM layers excel at capturing sequential
dependencies within data, potentially improving intrusion detection by considering the
temporal nature of network traffic.

CNN-GRU: This model utilizes Gated Recurrent Unit (GRU) layers instead of BiLSTMs.
GRUs offer similar functionality but with a simpler architecture.

The project utilizes the KDD Cup 10 percent dataset, a benchmark dataset for intrusion
detection, to train and evaluate these models. We perform essential data preprocessing steps
like label encoding, feature standardization, and reshaping for the CNN layer. Following
preprocessing, each model undergoes training and evaluation.

Our primary objective is to identify the most accurate model for vulnerability analysis in IoT
sensor networks. We compare the models' performance based on their ability to classify various
network traffic patterns into distinct attack categories. Classification reports and visualizations
of training and validation loss/accuracy curves will be employed to assess model convergence,
and generalizability, and ultimately, pinpoint the most accurate model for this task.

This project contributes valuable insights into leveraging DL for enhanced IoT security. By
comparing the accuracy of CNN, CNN-BiLSTM, and CNN-GRU architectures in intrusion
detection, we aim to identify the most effective approach for vulnerability analysis and
intrusion detection in sensor-based networks. Additionally, the project demonstrates the
process of loading a trained model and making predictions on new sensor data, showcasing the
practical application of the most accurate DL model in real-world IoT security scenarios.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 13

CHAPTER 2:

LITERATURE SURVEY

Predictive maintenance (PdM) has become a crucial aspect of modern industries, utilizing
machine learning (ML) and Internet-of-Things (IoT) sensors to predict equipment failures
before they occur. These PdM systems offer significant benefits such as reduced downtime,
lower maintenance costs, and increased production. However, the reliance on IoT sensors and
ML algorithms introduces vulnerabilities to cyberattacks that can manipulate sensor data and
compromise the effectiveness of PdM .

Existing research focuses on improving the accuracy of PdM systems using deep learning (DL)
techniques. However, there is a critical gap regarding the impact of cyberattacks, particularly
False Data Injection Attacks (FDIA), on these systems. FDIA stealthily alters sensor
measurements, bypassing basic detection mechanisms and feeding manipulated data into the
ML models. This can lead to delayed maintenance or even catastrophic failures in safety-
critical applications, highlighting the need for further investigation.

While extensive research explores attack detection and mitigation in cyber-physical systems
(CPS), the impact of FDIA on PdM systems remains largely unexplored. This is concerning,
especially for applications like aircraft engine maintenance, where delayed actions due to FDIA
can cause mid-air engine failures. The widespread use of PdM systems in the aerospace
industry by companies like Pratt and Whitney, Rolls-Royce, and General Electric further
emphasizes the importance of addressing this issue.

Modern aircraft engines, equipped with thousands of sensors, leverage advanced DL
algorithms to predict maintenance needs and optimize fuel usage. However, the vulnerability
of these sensor-based systems to attacks remains a challenge. Existing sensor attack detection
solutions designed for broader IoT and CPS domains might not be suitable for PdM due to
scalability limitations and resource constraints on individual sensors.

This research aims to bridge this gap by investigating the impact of FDIA on PdM systems. We
will model realistic scenarios with a limited number of compromised sensors and analyze the
effects on different deep learning-based PdM models. This will contribute valuable insights
into the vulnerabilities of PdM systems and pave the way for developing robust solutions
against cyberattacks.[1]

The vast number of interconnected devices within the Internet of Things (IoT) landscape
presents significant security challenges. The proliferation of IoT devices across smart homes,
industrial systems, and personal devices introduces new attack vectors for malicious actors to
exploit. These devices often collect and transmit sensitive data, making them prime targets for
eavesdropping, data breaches, and denial-of-service attacks. Traditional security methods are
struggling to keep pace with the evolving threats posed by the ever-growing IoT ecosystem.

Deep learning has emerged as a promising approach for intrusion detection in IoT systems.
Deep learning algorithms can effectively analyze large amounts of data to identify patterns and
anomalies that may indicate malicious activity. This research investigates the performance of
three deep learning models for intrusion detection in IoT: convolutional neural networks

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 14

(CNNs), long short-term memory (LSTM), and gated recurrent units (GRUs). CNNs are well-
suited for extracting spatial features from data, making them effective for identifying anomalies
in network traffic patterns. LSTMs and GRUs are a type of recurrent neural network (RNN)
that can learn long-term dependencies within data sequences. This makes them suitable for
analyzing time-series data collected from IoT devices, where identifying patterns and
anomalies across sequences of sensor readings can be crucial for intrusion detection.

By comparing the performance of these three deep learning models on a standard IoT intrusion
detection dataset, this research aims to identify the most accurate approach for intrusion
detection in IoT systems. The findings of this research will contribute to the development of
more secure IoT environments by improving the accuracy of intrusion detection and mitigating
the risks associated with cyberattacks. [2]

As cyber attacks and cybercriminals target cyber-physical systems (CPSs) with increasing
frequency, the need for robust detection mechanisms becomes paramount. While traditional
methods struggle to keep pace, a new era of opportunity dawns with the emergence of machine
learning (ML), particularly deep learning (DL). DL's layered architecture and ability to extract
valuable information from training data make it superior to traditional machine learning
methods in this context. The survey analyzes recent DL solutions through a six-step
methodology, highlighting the importance of understanding the CPS scenario, identifying
relevant attacks, formulating the detection problem, customizing DL models, acquiring training
data, and evaluating performance. Existing research shows promise for DL-based attack
detection, partly due to the availability of high-quality public datasets. The survey concludes
by outlining key challenges, opportunities, and future research directions in this domain. [3]

In the domain of predictive maintenance for rotating machines, a promising approach revolves
around analyzing the shape of the rotor shaft's orbit. This survey delves into a study that
proposes a novel algorithm for this purpose, leveraging Convolutional Neural Networks
(CNNs). CNNs are powerful tools for image pattern recognition, and in this application, the
CNN is trained on a comprehensive database of various orbit shapes. This training empowers
the CNN to not only detect deviations from normal operating patterns but also to classify the
specific fault type causing the anomaly. This capability offers a multitude of benefits for
predictive maintenance programs. Early fault detection becomes possible, allowing for timely
intervention to prevent catastrophic failures and ensure operational safety. Additionally,
optimized maintenance schedules can be implemented based on the insights gleaned from orbit
analysis, leading to reduced maintenance costs and improved resource allocation. [4]

Smart home devices, while bringing convenience to our lives, introduce new security risks due
to the lack of standardized security measures. Existing vulnerability studies often focus on
well-known vendors, who tend to have stronger security due to public scrutiny. This research
highlights the potential vulnerability of lesser-known vendors with lax security practices.
Through a review of existing research and a comparative analysis of security postures between
different vendors, the study aims to confirm that lesser-known vendors are under-represented
in vulnerability research and have weaker security. This focus on under-researched areas
contributes to a more comprehensive understanding of security vulnerabilities in smart home
IoT devices. [5]

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 15

CHAPTER 3:

EXISTING SYSTEM

In the era of Industry 4.0, predictive maintenance (PdM) solutions have emerged as crucial
tools for fault prediction in components and systems. These solutions leverage advanced
machine learning algorithms, particularly deep learning, and Internet-of-Things (IoT) sensors
to enhance predictive capabilities. However, the susceptibility of IoT sensors and deep learning
algorithms to cyber-attacks, specifically False Data Injection Attacks (FDIA), poses a
significant threat to the reliability and effectiveness of PdM systems.

3.1 Objective

This study aims to investigate the repercussions of False Data Injection Attacks on deep
learning-enabled PdM systems, focusing on the vulnerabilities introduced by compromised IoT
sensor data. By analysing the impact of FDIA on predictive maintenance processes, the
research seeks to underscore the importance of developing resilient algorithms and detection
mechanisms to mitigate these threats effectively.

3.2 Methodology

1. Dataset Selection:
 The study utilizes NASA's C-MAPSS dataset for modelling False Data Injection

Attacks (FDIA) on a turbofan engine Predictive Maintenance (PdM) system.

2. Algorithm Selection and Training:
 Three state-of-the-art deep learning algorithms are employed for RUL prediction:

Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and
Convolutional Neural Network (CNN).

 The algorithms are trained on the C-MAPSS dataset to predict the Remaining
Useful Life (RUL) of the turbofan engine.

3. Performance Evaluation:
 The performance of LSTM, GRU, and CNN models is evaluated based on their

accuracy in predicting RUL using the dataset.

4. False Data Injection Attack Modelling:
 Two types of False Data Injection Attacks (FDIA) are modeled and applied to the

turbofan engine sensor data: continuous and interim attacks.
 The attacks involve compromising sensor measurements by a small margin to

bypass fault detection mechanisms and impact the predictive maintenance process.

5. Impact Assessment:
 The effects of continuous and interim FDIA on the predictive maintenance

systems based on LSTM, GRU, and CNN models are analyzed.
 The study assesses how the attacks influence the accuracy and resilience of the

deep learning-enabled PdM systems.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 16

6. Result Analysis:
 The obtained results are analyzed to determine the extent of the impact of FDIA

on RUL prediction accuracy and the performance of the deep learning
algorithms.

 Insights are drawn regarding the vulnerabilities introduced by compromised IoT
sensor data and the implications for predictive maintenance processes.

7. Comparison and Validation:
 A comparison is made between the performance of LSTM, GRU, and CNN

models in the presence of FDIA to evaluate their robustness and effectiveness.
 The validation of the results is conducted to ensure the reliability and

reproducibility of the findings.

8. Detection Mechanism Exploration:
 The study may explore potential detection mechanisms or strategies to mitigate

the effects of False Data Injection Attacks on deep learning-enabled predictive
maintenance systems.

 Recommendations for enhancing the security and resilience of PdM systems
against cyber-attacks may be proposed based on the findings.

3.3 Result

Fig 3.1 Result Analysis of PdM System

 The GRU-based PdM model surpasses existing literature in terms of RUL prediction

accuracy using the C-MAPSS dataset.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 17

 Continuous and interim FDIA significantly impact RUL prediction accuracy,
highlighting the vulnerabilities of deep learning-enabled PdM systems to sensor
attacks.

 The stealthy nature of FDIA complicates detection, emphasizing the necessity for
robust detection techniques.

3.4 Future Scope

More datasets can be explored for intrusion detection on IoT devices in future. This work can
also be extended to study the effect of other Deep Learning variants of algorithms such as
genetic algorithm (GA) and bidirectional short-term memory (BiLSTM) for better
performance.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 18

CHAPTER 4:

PROPOSED SYSTEM

The goal is to detect network intrusions or attacks based on network traffic data. Each record
in the dataset represents a network connection, and the task is to classify each connection as
either normal or malicious. The dataset is loaded into a Pandas DataFrame and subjected to
preprocessing. Categorical columns undergo encoding using LabelEncoder, while numerical
columns are standardized with StandardScaler. Labels are converted to categorical format for
model training.

Three different neural network architectures are implemented:

1. CNN-BiLSTM: A combination of Convolutional Neural Network (CNN) layers
followed by Bidirectional Long Short-Term Memory (BiLSTM) layers.

2. CNN-GRU: Similar to CNN-BiLSTM, but with Gated Recurrent Unit (GRU) layers
instead of BiLSTM.

3. CNN: A simple Convolutional Neural Network architecture.

The dataset is split into training and testing sets. Each model is compiled with appropriate loss
function, optimizer, and evaluation metrics. Models are trained on the training data with a
specified number of epochs and batch size. After training, the models are evaluated on the
testing set to assess performance metrics such as accuracy, precision, recall, and F1-score.
Trained models are saved to disk in HDF5 format (.h5) using model.save method for future use
without retraining. Models can be integrated into a production environment for real-time or
batch processing of network traffic data. Continuous monitoring of the deployed models'
performance is essential to ensure accuracy over time. Periodic retraining may be necessary to
adapt to evolving attack patterns and changes in network behaviour. The trained models can be
integrated into a Network Intrusion Detection System (NIDS) framework for automated
detection of network attacks. Real-time network traffic can be passed through the deployed
models for classification, enabling swift response to potential threats. Depending on the scale
of the network and available computational resources, models can be optimized for
performance and scalability using techniques such as distributed training or model
quantization.

4.1 Merits of Proposed System

 Machine Learning for Evolving Threats: The system utilizes machine learning to
identify complex and evolving attack signatures that may evade traditional rule-based
methods.

 High Accuracy with CNN-BiLSTM: By training a CNN-BiLSTM model on historical
labeled data, the system achieves high accuracy in detecting various attack types.

CNN-BiLSTM excels over a baseline CNN by:

 Capturing long-term dependencies in network traffic data, crucial for
identifying sophisticated attacks.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 19

 Learning relationships between network events spread across time,
beneficial for detecting multi-stage attacks.

 Creating a richer feature representation through combined CNN and
BiLSTM strengths, leading to better classification of normal and attack
traffic.

 Real-time Analysis and Response: The system performs real-time analysis, enabling
prompt responses to potential attacks, minimizing the attacker's window of opportunity.

 Flexibility and Customization: The system allows exploration of different models
(e.g., CNN-GRU) and customization of features and attack classifications based on
specific network environments and security needs.

 Automated Alerting and Actions: The system provides automated alerting for
security personnel and can initiate predefined response actions (e.g., blocking traffic,
isolating systems) to mitigate attacks.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 20

CHAPTER 5:

SYSTEM DESIGN ARCHITECTURE

5.1 Architecture Diagram

Data Analysis: This is the initial step where the raw data is examined to understand its
properties and suitability for the task. This might involve tasks like identifying the data, missing
entries, and analysing data distribution.

Data Preprocessing: In this stage, the raw data is transformed into a format that the machine
learning model can understand and process effectively. This may involve techniques like
tokenization, stemming, lemmatization, and vectorization.

Model Splitting: Here, the pre-processed data is divided into two sets: a training set and a
validation set. The training set is used to train the model, while the validation set is used to
evaluate the model’s performance and prevent overfitting.

Model Training: This is where the machine learning model learns from the training data. The
model is iteratively adjusted to improve its performance on the training set.

Model Validation: The performance of the trained model is assessed on the validation set. This
helps identify if the model is overfitting on the training data and generalizes well to unseen
data.

Model Saving: If the model’s performance on the validation set meets the criteria, the model
is then saved for future use.

Prediction: Once a model is trained and saved, it can be used to make predictions on new,
unseen data.

Different model architectures, including CNN (Convolutional Neural Network), GRU (Gated
Recurrent Unit), and CNN-BILSTM (Bidirectional Long Short-Term Memory) are used as the
models for conducting the analysis.

Fig 5.1 System Architecture

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 21

5.2 Use Case Diagram

A use case diagram illustrates the interaction between a user/admin and a system. This diagram
shows the different functionalities available to a user of a system.

Register: This functionality allows a new user to create an account within the system.

Login: This functionality allows a registered user to gain access to the system using their
credentials.

View User: This functionality allows a user to access and view their account information
within the system.

Upload: This functionality allows a user to upload data or files to the system.

Log Out: This functionality allows a user to end their session and exit the system.

The user can access the functionalities: Register, login, Upload and Log Out

The admin can access the functionalities: Login, View User and Log Out

Fig 5.2 Use Case Diagram

5.3 Data Flow Diagrams

5.3.1 Level 0

Fig 5.3 Level 0 DFD

A Level 0 DFD, which is a high-level view of a system that depicts the overall flow of data.
This DFD shows a system with three main entities: a User, an Administrator, and a
Vulnerability in an Internet of Things (IoT) device.

Request

Response

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 22

Request: The User initiates the process by requesting information from the Administrator. The
nature of this request is not explicitly shown in the diagram but could be something like
reporting a suspected vulnerability in an IoT device they manage.

Response: The Administrator then processes the request and sends a response back to the User.
Again, the nature of this response is not explicitly shown but could be information or guidance
on how to address the reported vulnerability.

5.3.2 Level 1 (Admin Side)

Fig 5.4 Level 1 (Admin Side) DFD

 A Level 1 DFD, which is a more detailed view of a system than a Level 0 DFD.

User: The User entity is responsible for two main functions:

Report Vulnerability: The user initiates the process by reporting a suspected vulnerability in an
IoT device they manage. Details about the suspected vulnerability are captured in a report.

View Response: The User can view the response sent by the Administrator regarding the
reported vulnerability.

Administrator: The Administrator entity is responsible for processing the information
received from the User and sending a response. It has two main functions:

Process Report: The Administrator receives and processes the report submitted by the User
regarding the vulnerability in an IoT device. This likely involves tasks such as analyzing the
report to assess the severity of the vulnerability.

Send Response: The Administrator sends a response back to the User regarding the reported
vulnerability. The response may include information on how to address the vulnerability or
next steps the user should take.

5.3.3 Level 1 (User Side)

Fig 5.5 Level 1 (User Side) DFD

A Level 1 Data Flow Diagram (DFD) for a user interacting with a database system. It depicts
the flow of data as a user interacts with the system to view and potentially update information.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 23

User: The User entity is responsible for initiating interactions with the system. The user has
two main functions:

Login: The user can log in to the system using their credentials.

View/Update: Once logged in, the user can view and potentially update information stored in
the database.

System: The system entity is responsible for processing the user’s requests and interacting with
the database. It has two main functions:

Process Login: The system validates the user’s credentials upon login.

Process View/Update: The system retrieves data from the database based on the user’s request
and presents it to the user. It also allows the user to update the data and stores the changes back
into the database.

Database: The Database entity stores the system’s data. It interacts with the system to provide
and receive data based on user requests.

Data Flows:

The arrows in the DFD represent the flow of data between the user, system, and database
entities. Here’s a breakdown of the data flows depicted in the image:

Login Credentials: The user submits their login credentials to the system.

Login Validation: The system sends the login credentials to the database to verify the user’s
identity.

Login Response: The system sends a response to the user indicating whether the login was
successful.

Data Request: The user can submit a request to view or update data stored in the database.

Data Retrieval: The system retrieves the requested data from the database.

Data View: The system presents the retrieved data to the user.

Data Update: The user can submit updates to the data.

Data Update Storage: The system stores the updated data back into the database.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 24

CHAPTER 6:

SYSTEM REQUIREMENTS

6.1 Software Requirements

 Operating System: Windows 10 or above

 IDE: Notepad ++

 Front End: HTML, CSS, js,

 Back End: python, MYSQL, Django

 Tool kit: XAMPP

6.2 Hardware Requirements

PROCESSOR: Intel Core i3 – 3220 (3.3 Ghz) or above

RAM: 4 GB or above

STORAGE: 512 GB or above

OTHER: Keyboard and Mouse

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 25

CHAPTER 7:

MODULE DESCRIPTION

This analysis consists of 5 modules:

1. Data Manipulation and Analysis
2. Data Preprocessing
3. Model Building and Training
4. Model Evaluation
5. Virtualization

7.1 Module 1: Data Manipulation and Analysis:
This module imports the pandas libraries using import pandas as pd. Pandas is used for working
with tabular data. It provides Data Frames, which are essentially spreadsheets in Python, for
organizing and manipulating data.
pandas (pd): This module offers powerful data structures (DataFrames) for handling tabular
data. It's used for:

Reading the CSV file into a DataFrame (pd.read_csv)

Displaying the DataFrame (print(df.head()))

Selecting specific columns (df.select_dtypes)

Saving a DataFrame to a CSV file (test_data.to_csv)

numpy (np): This module provides numerical computing functionalities:

Reshaping data for the Conv1D layer (X.values.reshape(...))

7.2 Module 2: Data Preprocessing:
Data is set into arrays for mathematical computation of data, after which the data is split into
two parts for training and testing sets which is crucial for evaluating the model. Here the data
is standardised into numerical features for better training performance, the data is transformed
from text lables to numerical values which is better understood by the models.
sklearn.model_selection: This sub library from scikit-learn offers tools for splitting data into
training and testing sets:

train_test_split: Splits the data for training and testing (train_test_split)

sklearn.preprocessing: This sub library from scikit-learn provides methods for data
preprocessing:

StandardScaler: Standardizes numerical features for better training performance
(StandardScaler)

LabelEncoder: Encodes categorical features into numerical values (LabelEncoder)

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 26

7.3 Module 3: Model Building and Training:
In this module various files and functions are included for building and training the models that
are used for this analysis in the cause of this research the models included are GRU, CNN and
CNN-BiLSTM.
tensorflow.keras: This module from TensorFlow offers deep learning functionalities:

Sequential: Used to build a sequential neural network model (Sequential)

Conv1D, MaxPooling1D: Used for convolutional layers and pooling in 1D data (Conv1D,
MaxPooling1D)

Bidirectional, LSTM, GRU, Dense, Dropout: Used for various neural network layers, including
recurrent layers (Bidirectional, LSTM, GRU), fully connected layers (Dense), and dropout
regularization (Dropout)

Flatten: Flattens the data before feeding it to fully connected layers (Flatten)

to_categorical: Converts categorical labels to one-hot encoding (to_categorical)

model.compile: Compiles the model by specifying the optimizer, loss function, and metrics
(model.compile)

model.fit: Trains the model on the provided data (model.fit)

model.save: Saves the trained model (model.save)

load_model: Loads a pre-trained model (load_model)

7.4 Module 4: Model Evaluation:
Here we evaluate the performance of the models after they are trained. Functions that provide
tools are used for providing a detailed breakdown of the model's performance on the testing
set, including metrics like precision, recall, and F1-score.
sklearn.metrics: This sublibrary from scikit-learn provides functions for evaluating machine
learning models:

classification_report: Prints a classification report summarizing model performance on the
testing set (classification_report)

7.5 Module 5: Visualization:
It's used here to plot the training and validation loss/accuracy curves across training epochs,
which helps understand how the model learns and performs during training. The code also
saves these plots as images for further analysis.
matplotlib.pyplot (plt): This module is used for creating plots and visualizations:

Plotting loss and accuracy curves (plt.plot)

Saving plots as images (plt.savefig)

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 27

CHAPTER: 8

IMPLEMENTATION

8.1 Steps to Use the Website

Step 1: The website is hosted in the url: http://127.0.0.1:8000/

Step 2: Once the url is opened, click on the registration option and fill the necessary details to
create your account.

Step 3: After Registration, click Login. Fill the details of the Login page to access your
account.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 28

Step 4: After logging in, click on Upload found in the upper corner of the website.

Step 5: Once the Upload page opens, click on the choose file option.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 29

Step 6: Once the file manager is opened, select any one other test files which contains a
vulnerability code.

Step7: After the test file is uploaded, the website will show the vulnerability saved in the test
file.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 30

CHAPTER: 9

RESULT ANALYSIS

9.1 Training Accuracy

Fig 9.1 Training Validation Accuracy CNN-BiLSTM

The graph shows the relationship between training and validation accuracy of a CNN-BiLSTM
model over epochs. The training accuracy (red line) increases steadily, reaching nearly 0.998.
The validation accuracy (blue line) also increases, reaching a maximum of 0.992. This suggests
the model is learning well and generalizing to unseen data.

Fig 9.2 Training Validation Accuracy CNN

The graph depicts the training and validation accuracy of a base CNN model over epochs. Both
accuracy values (training in red, validation in blue) increase over training epochs, indicating
the model is learning effectively. The validation accuracy reaches around 0.992, suggesting
good generalizability to unseen data.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 31

Fig 9.3 Training Validation accuracy GRU

The graph shows training (red) and validation (blue) accuracy of a GRU model over epochs.
Both lines rise with training epochs, indicating successful learning. Validation accuracy reaches
around 0.99, suggesting the model generalizes well to unseen data.

9.2 Training Loss

+

Fig 9.4 Training validation Loss CNN-BiLSTM

This graph depicts the training and validation loss of a Convolutional Neural Network with
Bidirectional Long Short-Term Memory (CNN-BiLSTM) model. Ideally, both training (green)
and validation (blue) loss decrease with epochs. A downward trend suggests the model is
learning effectively. If validation loss increases while training loss keeps dropping, it might
indicate overfitting.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 32

Fig 9.5 Training Validation Loss CNN

This graph depicts the training (red) and validation (blue) loss of a Base Convolutional Neural
Network (CNN) model. Ideally, both loss values decrease with training epochs. The downward
trend observed here suggests the model is learning effectively from the training data. The
validation loss remains relatively low, indicating that the model generalizes well to unseen data.

Fig 9.6 Training Validation Loss GRU

This graph shows the training and validation loss of a Gated Recurrent Unit (GRU) model. The
training loss (green) decreases steadily over epochs, indicating the model is learning the
patterns in the training data. The validation loss (blue) also shows a downward trend,
suggesting the model generalizes well to unseen data.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 33

Fig 9.7 Accuracy Prediction Table

The table shows the accuracy of three different predictor architectures for a natural language
processing task. The architectures are CNN-BILSTM, GRU, and CNN. The CNN-BILSTM
architecture has the highest accuracy, at 99.85%. The GRU architecture has an accuracy of
99.79%, and the CNN architecture has an accuracy of 99.63%.

In conclusion, the CNN-BILSTM architecture achieved the best performance among the three
architectures tested.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 34

CHAPTER: 10

CONCLUSION

In conclusion, this project endeavors to assess the efficacy of three distinct deep learning
models—CNN, GRU, and CNN-BiLSTM—in the realm of network intrusion detection. By
employing various neural network architectures, the objective is to discern which model yields
the highest accuracy, hence serving as the optimal choice for detecting potential network
intrusions.

Upon conducting extensive experimentation and evaluation, it becomes evident that the CNN-
BiLSTM model emerges as the most promising candidate among the three. This conclusion is
substantiated by the attained accuracy metrics, where CNN-BiLSTM outperforms both the
CNN and GRU architectures.

The provided code facilitates a comprehensive assessment of these models, encompassing
essential stages such as data preprocessing, model construction, training, evaluation, and
persistence. Notably, each model undergoes rigorous training on the dataset, followed by
evaluation on a separate testing set to gauge its performance.

CNN-BiLSTM, characterized by its integration of convolutional and bidirectional LSTM
layers, achieves a remarkable accuracy rate of 99.8%. This outstanding performance
underscores the effectiveness of leveraging sophisticated architectures capable of capturing
both spatial and temporal dependencies within network traffic data.

In summary, this project underscores the critical role of deep learning models, particularly
CNN-BiLSTM, in bolstering network security through robust intrusion detection mechanisms.
By leveraging advanced neural network architectures and meticulous evaluation
methodologies, it lays the foundation for developing resilient and adaptive network intrusion
detection systems capable of safeguarding against a myriad of cyber threats.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 35

APPENDICES

SOURCE CODE

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler, LabelEncoder

from sklearn.metrics import classification_report

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv1D, MaxPooling1D, Bidirectional, LSTM, Dense,
Dropout, Flatten

from tensorflow.keras.utils import to_categorical

Replace 'path/to/kddcup.data_10_percent' with the actual path to your file

file_path = 'kddcup.data_10_percent'

Define column names based on the dataset documentation

column_names = [

 'duration', 'protocol_type', 'service', 'flag', 'src_bytes', 'dst_bytes',

 'land', 'wrong_fragment', 'urgent', 'hot', 'num_failed_logins',

 'logged_in', 'num_compromised', 'root_shell', 'su_attempted',

 'num_root', 'num_file_creations', 'num_shells', 'num_access_files',

 'num_outbound_cmds', 'is_host_login', 'is_guest_login', 'count',

 'srv_count', 'serror_rate', 'srv_serror_rate', 'rerror_rate',

 'srv_rerror_rate', 'same_srv_rate', 'diff_srv_rate', 'srv_diff_host_rate',

 'dst_host_count', 'dst_host_srv_count', 'dst_host_same_srv_rate',

 'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate',

 'dst_host_srv_diff_host_rate', 'dst_host_serror_rate',

 'dst_host_srv_serror_rate', 'dst_host_rerror_rate',

 'dst_host_srv_rerror_rate', 'label']

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 36

Read the dataset into a pandas DataFrame

df = pd.read_csv(file_path, header=None, names=column_names)

Display the first few rows of the DataFrame

print(df.head())

unique_labels = df['label'].unique()

print("Unique Labels:", unique_labels)

Assuming df is your DataFrame with non-integer valued columns

non_integer_columns = df.select_dtypes(exclude=['int64', 'float64']).columns

label_encoder = LabelEncoder()

for column in non_integer_columns:

 df[column] = label_encoder.fit_transform(df[column])

unique_labels = df['label'].unique()

print("Unique Labels:", unique_labels)

Encode categorical labels

label_encoder = LabelEncoder()

df['label'] = label_encoder.fit_transform(df['label'])

Split the dataset into features and labels

X = df.drop('label', axis=1)

y = df['label']

Standardize numerical features

numerical_columns = X.select_dtypes(include=np.number).columns

scaler = StandardScaler()

X[numerical_columns] = scaler.fit_transform(X[numerical_columns])

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 37

 # Convert labels to categorical format

y = to_categorical(y)

Reshape the input data for the Conv1D layer

X = X.values.reshape(X.shape[0], X.shape[1], 1)

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Build the CNN-BiLSTM model

model = Sequential()

model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(X.shape[1], 1)))

model.add(MaxPooling1D(pool_size=2))

model.add(Bidirectional(LSTM(50, activation='relu')))

model.add(Dropout(0.5))

model.add(Dense(23, activation='softmax')) # Adjust the number of units based on your
problem

Compile the model

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

Train the model

history_bilstm = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_split=0.2)

Evaluate the model on the test set

y_pred = model.predict(X_test)

y_pred_classes = np.argmax(y_pred, axis=1)

y_test_classes = np.argmax(y_test, axis=1)

print(classification_report(y_test_classes, y_pred_classes))

Assuming 'model' is your trained Keras model

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 38

model.save('model_bilstm.h5')

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Conv1D, MaxPooling1D, GRU, Dropout, Dense

Encode categorical labels

label_encoder = LabelEncoder()

df['label'] = label_encoder.fit_transform(df['label'])

Split the dataset into features and labels

X = df.drop('label', axis=1)

y = df['label']

Standardize numerical features

numerical_columns = X.select_dtypes(include=np.number).columns

scaler = StandardScaler()

X[numerical_columns] = scaler.fit_transform(X[numerical_columns])

Convert labels to categorical format

y = to_categorical(y)

Reshape the input data for the Conv1D layer

X = X.values.reshape(X.shape[0], X.shape[1], 1)

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 39

Build the CNN-GRU model

model = Sequential()

model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(X.shape[1], 1)))

model.add(MaxPooling1D(pool_size=2))

model.add(GRU(50, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(23, activation='softmax')) # Adjust the number of units based on your
problem

Compile the model

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

Print the model summary

model.summary()

Train the model

history_gru = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_data=(X_test,
y_test))

Assuming 'model' is your trained Keras model

model.save('model_gru.h5')

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Conv1D, MaxPooling1D, Dropout, Flatten, Dense

Encode categorical labels

label_encoder = LabelEncoder()

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 40

df['label'] = label_encoder.fit_transform(df['label'])

Split the dataset into features and labels

X = df.drop('label', axis=1)

y = df['label']

Standardize numerical features

numerical_columns = X.select_dtypes(include=np.number).columns

scaler = StandardScaler()

X[numerical_columns] = scaler.fit_transform(X[numerical_columns])

Convert labels to categorical format

y = to_categorical(y)

Reshape the input data for the Conv1D layer

X = X.values.reshape(X.shape[0], X.shape[1], 1)

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Build the CNN model

model = Sequential()

model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(X.shape[1], 1)))

model.add(MaxPooling1D(pool_size=2))

model.add(Dropout(0.5))

model.add(Flatten())

model.add(Dense(50, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(23, activation='softmax')) # Adjust the number of units based on your
problem

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 41

Compile the model

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

Print the model summary

model.summary()

Train the model

history_cnn = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_data=(X_test,
y_test))

Assuming 'model' is your trained Keras model

model.save('model_cnn.h5')

import matplotlib.pyplot as plt

Plot the loss and accuracy curves for training and validation

fig, ax = plt.subplots(1, 1, figsize=(10, 8)) # Create a 3x1 grid of subplots

First subplot: Loss

ax.plot(history_bilstm.history['loss'], color='b', label="Training loss (BiLSTM)")

ax.plot(history_bilstm.history['val_loss'], color='r', label="Validation loss (BiLSTM)")

ax.set_title("Training and Validation Loss")

ax.set_xlabel("Epochs")

ax.set_ylabel("Loss")

ax.legend(loc='best')

Save the figure

plt.savefig("training_validation_loss_Bilstm.png")

import matplotlib.pyplot as plt

Plot the loss and accuracy curves for training and validation

fig, ax = plt.subplots(1, 1, figsize=(10, 8)) # Create a 3x1 grid of subplots

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 42

First subplot: Loss

ax.plot(history_gru.history['loss'], color='b', label="Training loss (GRU)")

ax.plot(history_gru.history['val_loss'], color='r', label="Validation loss (GRU)")

ax.set_title("Training and Validation Loss")

ax.set_xlabel("Epochs")

ax.set_ylabel("Loss")

ax.legend(loc='best')

Save the figure

plt.savefig("training_validation_loss_gru.png")

import matplotlib.pyplot as plt

Plot the loss and accuracy curves for training and validation

fig, ax = plt.subplots(1, 1, figsize=(10, 8)) # Create a 3x1 grid of subplots

First subplot: Loss

ax.plot(history_cnn.history['loss'], color='b', label="Training loss (CNN)")

ax.plot(history_cnn.history['val_loss'], color='r', label="Validation loss (CNN)")

ax.set_title("Training and Validation Loss")

ax.set_xlabel("Epochs")

ax.set_ylabel("Loss")

ax.legend(loc='best')

Save the figure

plt.savefig("training_validation_loss_cnn.png")

import matplotlib.pyplot as plt

fig, ax = plt.subplots(1, 1, figsize=(10, 8))

ax.plot(history_bilstm.history['acc'], color='b', label="Training accuracy (BiLSTM)")

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 43

ax.plot(history_bilstm.history['val_acc'], color='r', label="Validation accuracy (BiLSTM)")

ax.set_title("Training and Validation Accuracy")

ax.set_xlabel("Epochs")

ax.set_ylabel("Accuracy")

ax.legend(loc='best')

plt.savefig("training_validation_accuracy_bILSTM.png")

import matplotlib.pyplot as plt

fig, ax = plt.subplots(1, 1, figsize=(10, 8))

ax.plot(history_gru.history['acc'], color='b', label="Training accuracy (GRU)")

ax.plot(history_gru.history['val_acc'], color='r', label="Validation accuracy (GRU)")

ax.set_title("Training and Validation Accuracy")

ax.set_xlabel("Epochs")

ax.set_ylabel("Accuracy")

ax.legend(loc='best')

plt.savefig("training_validation_accuracy_GRU.png")

import matplotlib.pyplot as plt

fig, ax = plt.subplots(1, 1, figsize=(10, 8))

ax.plot(history_cnn.history['acc'], color='b', label="Training accuracy (CNN)")

ax.plot(history_cnn.history['val_acc'], color='r', label="Validation accuracy (CNN)")

ax.set_title("Training and Validation Accuracy")

ax.set_xlabel("Epochs")

ax.set_ylabel("Accuracy")

ax.legend(loc='best')

plt.savefig("training_validation_accuracy_cnn.png")

from tensorflow.keras.models import load_model

loaded_model = load_model('model_bilstm.h5')

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 44

Save the 20th row to a new DataFrame for testing

test_data = df.iloc[[116000]]

Save the test data to a CSV file

test_data.to_csv('test_data1.csv', index=False)

Display the saved test data

print("Test Data:")

print(test_data)

import pandas as pd

import numpy as np

from tensorflow.keras.models import load_model

Load the pre-trained model

model = load_model('model_bilstm.h5') # Replace with the actual path to your trained model

Load the test data

test_data = pd.read_csv('test_data.csv') # Replace with the actual path to your test data

Extract features and labels from the test data

X_test = test_data.drop('label', axis=1)

y_test = test_data['label']

If label encoding was used during training, you may need to encode the labels

label_encoder = LabelEncoder()

y_test = label_encoder.transform(y_test)

Standardize numerical features (if used during training)

X_test[numerical_columns] = scaler.transform(X_test[numerical_columns])

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 45

Assuming you've reshaped the input data during training

X_test = X_test.values.reshape(X_test.shape[0], X_test.shape[1], 1)

Make predictions

predictions = model.predict(X_test)

Convert predictions to class labels

predicted_class_indices = np.argmax(predictions, axis=1)

Map indices to original class labels

inverse_transform if label encoding was used during training

predicted_labels = label_encoder.inverse_transform(predicted_class_indices)

Print predictions

print("Predicted Class Indices:", predicted_class_indices)

print("Predicted Labels:", predicted_labels)

test_data1 = df.iloc[[29]]

test_data1.to_csv('test.csv', index=False)

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 46

REFERENCES

1. Impact of False Data Injection Attacks on Deep Learning Enabled Predictive Analytics
Gautam Raj Mode, Prasad Calyam, Khaza Anuarul Hoque Department of Electrical
Engineering & Computer Science University of Missouri, Columbia, MO, USA
gmwyc@mail.missouri.edu, calyamp@missouri.edu, hoquek@missouri.edu

2. Intrusion Detection in IoT Using Deep Learning Alaa Mohammed Banaamah and
Iftikhar Ahmad

3. Zhang, J.; Pan, L.; Han, Q.-L.; Chen, C.; Wen, S.; Xiang, Y. Deep learning-based attack
detection for cyber-physical system cybersecurity: A survey. IEEE/CAA J. Autom. Sin.
2021, 9, 377–391.

4. M. A. der Mauer, T. Behrens, M. Derakhshanmanesh, C. Hansen, and S. Muderack,
“Applying sound-based analysis at porsche production: Towards predictive
maintenance of production machines using deep learning and internet-of-things
technology,” in Digitalization Cases. Springer, 2019, pp. 79–97.

5. Vulnerability Studies and Security Postures of IoT Devices: A Smart Home Case Study
Brittany D. Davis, Janelle C. Mason, and Mohd Anwar

6. R. K. Mobley, An introduction to predictive maintenance. Elsevier, 2002.

7. The US Air Force Is Adding Algorithms to Predict When Planes Will Break, Defense
One Magazine.” Available: https://www.defenseone.com/business/2018/05/us-air-
force-addingalgorithms-predict-when-planes-will-break/148234/.

8. IOT Use Cases and Innovation in IOT,” Available: https://medium.com/
@billsoftnet/iot-use-cases-and-innovation-in-iot-6b4e49fbc9dc.

9. R. Caponetto, F. Rizzo, L. Russotti, and M. Xibilia, “Deep learning algorithm for
predictive maintenance of rotating machines through the analysis of the orbits shape of
the rotor shaft,” in International Conference on Smart Innovation, Ergonomics and
Applied Human Factors. Springer, 2019, pp. 245–250.

10. Predictive maintenance benefits for the freight logistics industr,” Available:
https://www.ibm.com/downloads/cas/AVNOLWQW.

Vulnerability Analysis of IOT Sensors
Using Deep Learning Technology BCA (CT & ISM)

ST. TERESA’S COLLEGE (AUTONOMOUS), ERNAKULAM 47

