TB246243G

Reg. No	•
Name :	***************************************

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, MARCH 2024 2021 ADMISSIONS REGULAR SEMESTER VI - CORE COURSE (PHYSICS)

PH6B10B18 - Relativity and Spectroscopy

Time: 3 Hours Maximum Marks: 60

Part A

I. Answer any Ten questions. Each question carries 1 mark

(10x1=10)

- 1. If 4 kg of a substance is fully converted into energy, how much energy is produced?
- 2. Show that acceleration is invariant under Galilean transformation.
- 3. What do you mean by rest mass?
- 4. State the postulates of Bohr atom model.
- 5. What are the disadvantages of Rutherford atom model?
- State Larmor theorem.
- 7. No two electrons can occupy in the same quantum state. Explain.
- 8. Why are anti stokes lines less intense than stokes lines?
- 9. Homo nuclear diatomic molecules does not show vibrational spectrum. Why?
- 10. How does the moment of inertia of prolate and oblate molecules differ? Give one example for each.
- 11. Define chemical shift in NMR.
- 12. Draw the magnetic energy levels of a nucleus with half spin.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. At what speed should a clock be moved so that it may appear to lose 1 minute in each hour.
- 14. Find the momentum and velocity of an electron having a kinetic energy 10 MeV. The rest energy of the electron is 0.512 MeV.
- 15. Write a note on spin- orbit coupling.
- 16. At what speed must the electron revolve round the nucleus of helium atom in its ground state in order that it may not be pulled into the nucleus by electrostatic attraction.
- 17. Derive expressions for orbital magnetic moment of electron.
- 18. Consider the molecules CCl_4 , $CHCl_3$, and CH_2Cl_2 .(a). What kind of rotor are they? (b) Will they show pure rotational spectra?
- 19. Calculate the vibrational energy levels of an HCl molecule assuming the force constant to be 516 N/m
- 20. In the near infrared spectrum of HCI molecule there is single intense band at 2885.9/cm. Assuming that it is due to the transition between vibrational levels, show that the force constant k is 480 N/m. (Given $M_H=1.68X10^{-27}Kg$).
- 21. Calculate the magnetic field required to produce transition frequency of 120MHz for protons in Benzene. Given μ = 2.792 times nuclear magnetron.

Part C

- III. Answer any Two questions. Each question carries 10 marks
- 22. Derive Lorentz transformation equations for co ordinates with necessary explanation.

- 23. With necessary theory, explain anomalous Zeeman effect.
- 24. With necessary theory, explain the diatomic vibrational spectra.
- 25. With a neat diagram, explain the principle and working of ESR spectrometer.

