Reg.	No	•

Name :.....

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, MARCH 2024

2021 ADMISSIONS REGULAR

SEMESTER VI - CORE COURSE (MATHEMATICS)

MT6B12B18 - Linear Algebra

Time: 3 Hours

Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- Give an example of a two dimensional vector space.
- Determine whether $\{t, 2\}$ of \mathbb{P}^1 is linearly independent?
- Define the rank of a linear transformation.
- A 2x2 matrix A is known to have the eigen values -3 and 4. Calculate the eigen values of A^2 .
- Define the image of a matrix.
- Define a diagonalizable matrix. 6.

7.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 3 & 0 \\ 2 & -1 & 4 \end{bmatrix}_{\text{is di}}$$

Determine whether

- 8. The determinant of a 4x4 matrix is 144 and two of its eigen values are known to be -3 and 2. What can be said about the remaining eigen values?
- Establish that a matrix is singular if and only if it has a zero eigen value.
- 10. State Cauchy-Schwarz inequality.
- Normalize the vector $\bar{v} = \begin{bmatrix} 20 & -5 \end{bmatrix}^T$
- 12. Determine whether the set of vectors $\{ar u, ar v, ar w\}$ in \mathbb{R}^3 is an orthogonal set of vectors where

$$\bar{u} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}, \bar{v} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \\ 0 \end{bmatrix}, \bar{w} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Prove that if a matrix B is obtained from a matrix A by an elementary row operation, then the row space of A is same as the row space of B.
- 14. For any vector $ar{w}$ in a vector space v, show that $-1\odotar{w}=-ar{w}$
- 15. Calculate the coordinate representation of $\begin{bmatrix} 1 & 3 \end{bmatrix}$ with respect to the basis $\{ \begin{bmatrix} 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \end{bmatrix} \}$ of \mathbb{R}^2
- 16. Prove that the transition matrix from C to D, where both C and D are bases for the same finite dimensional vector space is invertible and its inverse is the transition matrix from D to C.
- 17. Find the transition matrices between two bases $G = \{t+1, t-1\}$ and $H = \{2t+1, 3t+1\}$ for p1
- 18. Find the matrix representation of the linear transformation $T:\mathbb{R}^2\mapsto\mathbb{R}^2$ defined by

$$T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 11a + 3b \\ -5a - 5b \end{bmatrix}$$
 with respect to the basis $E = \{ \begin{bmatrix} 3 & -1 \end{bmatrix}^T . \begin{bmatrix} 1 & -5 \end{bmatrix}^T \}$

- 19. Prove that similar matrices have the same eigen values.
- 20. Establish that the product of all the eigen values of a matrix equals the determinant of the matrix.
- 21. Establish that if \bar{x} and \bar{y} are orthogonal vectors in \mathbb{R}^n , then $||\bar{x}+\bar{y}||^2=||\bar{x}||^2+||\bar{y}||^2$

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

22. Describe the span of the vectors in the set

$$\mathbb{R} = \{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \}$$

- 23. State and prove rank-nullity theorem.
- 24. Let T be a linear transformation from an n-dimensional vector space V into W and let $\{\bar{v_1},\bar{v_2},...\bar{v_k}\}$ be a basis for the kernel of T. If this basis is extended to a basis $\{\bar{v_1},\bar{v_2},...\bar{v_k},\bar{v_{k+1}},...\bar{v_n}\}$ for V, then prove that $\{T(\bar{v}_{k+1}),T(\bar{v}_{k+2}),...T(\bar{v_n})\}$ is a basis for the image of T.
- 25. Determine whether the linear transformation $T:P^1\mapsto P^1$ defined by T(at+b)=(a+2b)t+(4a+3b) can be represented by a diagonal matrix.

