TB24670	9	P
---------	---	---

Reg. N	o:
Name	

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, MARCH 2024

2021 ADMISSIONS REGULAR

SEMESTER VI - CORE COURSE (MATHEMATICS)

MT6B09B18 - Real Analysis -II

Time: 3 Hours

Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. State Cauchy's general principle of convergence for infinite series.
- 2. Give an example of an alternating series that is convergent.
- Illustrate with the help of a counter-example that Cauchy's root test fails in analyzing the nature of convergence of some series.
- 4. State Fixed point theorem
- 5. Is the function f(x) = x |x| continuous? Justify.
- 6. Check whether the function f defined on **Z** , the set of integers as $f(x) = \frac{8}{9x-1}$ a continuous function ? Justify your answer.
- 7. Define upper Darboux sum of a bounded function f over [a,b]
- 8. State Darboux's condition of integrability of a bounded function.
- 9. Compute the lower Darboux sum L(P, f) of the function f(x) = 2x + 3 for the partition $P = \{2, 2.2, 2.9, 3\}$ of [2, 3].
- 10. If P^* is a refinement of partition P, the show that $U(P^*, f) \leq U(P, f)$.
- 11. State Dirichlet's test for uniform convergence
- 12. Check the uniform convergence of the series whose n^{th} term is $(0.5)^n \cos n^2 x$.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. State and prove Raabe's test.
- ^{14.} Check the convergence of the series whose nth term is given by $(n^3 + 1)^{1/3} n$
- 15. If a function f(x) is continuous on [a,b] and $f(a) \neq f(b)$, then prove that it assumes every value between f(a) and f(b).
- 16. Discuss the continuity of the function f defined on R by

$$f(x) = \begin{cases} -x^2, & \text{if } x \le 0\\ 5x - 4, & \text{if } 0 < x \le 1\\ 4x^2 - 3x & \text{if } 1 < x < 2\\ 3x + 4 & \text{if } x \ge 2 \end{cases}$$

at the points x = 0, 1 and 2.

- 17. If a function f is monotonic on [a,b], then show that it is integrable on [a,b].
- 18. Compute the upper integral and lower integral of the function $f(x) = \begin{cases} 0, & \text{when } x \text{ is rational} \\ 1, & \text{when } x \text{ is irrational} \end{cases}$ and hence prove that f is not integrable on any interval.

- 19. If a refinement P^* of the partition P of [a, b] contains p points more than P, and $f(x) \le k \ \forall x \in [a, b]$, then prove that $L(P, f) \le L(P^*, f) \le L(P, f) + 2pk\mu$ where μ is the norm of P.
- 20. State and prove Cauchy's criterion for uniform convergence of a sequence of functions.
- 21. Test for uniform convergence of { f_n } where $f_n(x) = \frac{x}{1 + nx^2}$ for all real x.

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

- 22. State and prove Leibnitz test for checking the convergence of an alternating series
- 23. (a) If a function f is continuous on [a,b] and f(a).f(b) < 0, then prove that there exist at least one point c in (a, b) such that f(c) = 0.
 - (b) Discuss the kind of discontinuity if any of the function $f(x) = \frac{x |x|}{x}$ at x = 2
- 24. State and prove a necessary and sufficient condition for the integrability of a bounded function on a closed interval.
- 25. $\sum_{\text{(a) If } n=1}^{\infty} a_n x^n$ is a series which converges for all values of x where |x| < R, then prove that $\sum_{\text{(b) State and prove Weierstrass M- test for uniform convergence of a series of functions.}} a_n R^n$