TB246286E

Reg. No :....

Name :.....

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, MARCH 2024 2021 ADMISSIONS REGULAR SEMESTER VI. CORE COMPUTER APPLICATIONS A

SEMESTER VI - CORE COURSE (COMPUTER APPLICATIONS) CA6B11B18 - Computer Network

Time: 3 Hours Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. Differentiate types of data in Data Communication.
- 2. Differentiate analog and digital signals.
- 3. For n devices in a network, what is the number of cable links required for a mesh topology?
- 4. What do you meant by an Omnidirectional antenna?
- 5. Name three switching techniques.
- 6. Name the advantages of optical fiber over twisted-pair and coaxial cable.
- 7. Find the number of parity bits and positions of parity bits for the following data word using steps of Hamming code 11110
- 8. Which are the two methods of variable length framing?
- 9. Explain EGP?
- 10. Define static routing.
- 11. What is Remote Logging?
- 12. What is Transposition ciphers?

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Briefly explain communication standards and protocols
- 14. Explain FDM with a neat diagram.
- 15. Differentiate circuit switching and packet switching with neat diagrams.
- 16. Discuss CSMA/CA
- 17. Explain Stop and Wait ARQ
- 18. Explain UDP protocol?
- 19. Explain the Architecture of IP header.
- 20. Explain the following application layer protocols a. HTTP b. File Transfer Protocols
- 21. Explain the following application layer protocols. 1. SMTP 2. FTP

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

- 22. Discuss different types of Networks each with neat diagram.
- 23. What is CRC ? Given the dataword 1010011010 and the divisor 10111. a. Show the generation of the codeword at the sender site. b. Show the checking the codeword at the receiver site.
- 24. Briefly explain congestion control mechanism and congestion avoidances in Network Layer.
- 25. Briefly explain Transport layer protocols.

