TF	324	158	20	J.
	,,,,	·		u

Reg. No :....

Name :.....

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, FEBRUARY 2024 2021 ADMISSIONS SUPPLEMENTARY (SAY) SEMESTER V - CORE COURSE (MATHEMATICS)

MT5B07B18 - Differential Equations

Time: 3 Hours

Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. Determine whether the equation $(x^{-2}+y^{-2})dx+(2y^2x+1)y^{-3}dy=0$ is exact.
- 2. Determine the integrating factor of $(2x + tany) dx + (x x^2 tany) dy = 0$.
- 3. Solve $tan\theta dr + 2rd\theta = 0$.
- 4. Evaluate the general solution $4\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + y = 0.$
- 5. The general solution of a differential equation is given by e^{3x} (Asinx + Bcosx). Find A and B if y(0) = -3, y'(0) = -1.
- 6. Determine whether $sin\theta$ and $cos\theta$ are linearly independent.
- 7. Evaluate the wronskian and check whether e^x and e^{2x} are linearly independent.
- 8. $\Gamma\left(\frac{1}{2}\right)$ Evaluate the value of
- 9. Express the standard form of the Frobenius series solution of a differential equation about a regular singular point.
- 10. Evaluate the value of $\Gamma(5)$
- 11. $z=y^2+2f\left(\frac{1}{x}+lny\right).$ Write the partial differential equation of
- 12. Write the partial differential equation of $z=xy+f(x^2+y^2)$

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Determine the oblique trajectories that intersect the family of straight lines y = cx at an angle 45° .
- 14. Solve (x+2y+3)dx+(2x+4y-1)dy=0.

15. Solve
$$x^3 \frac{d^3y}{dx^3} - 4x^2 \frac{d^2y}{dx^2} + 8x \frac{dy}{dx} - 8y = 4lnx$$

16.
$$\frac{d^2y}{\text{Solve } dx^2} - 3\frac{dy}{dx} + 2y = 4x^2.$$

17. Solve the indicial equation of
$$2x\frac{d^2y}{dx^2} + \frac{dy}{dx} + 2y = 0.$$

18. Solve
$$\frac{dx}{dt} + \frac{dy}{dt} + 2y = sint$$

$$\frac{dx}{dt} + \frac{dy}{dt} - x - y = 0.$$

 $\int_{\text{of}} 2x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + (x - 5)y = 0.$ 19. Solve the indicial equation of

20. Find the solution of the partial differential equation (y(x+y)+az) p + (x(x+y)-az) q = z(x+y).

21. Solve the partial differential equation $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

22. a) Establish that if M(x,y)dx +N(x,y)dy=0 is a homogeneous differential equation, then the change of the variable y=vx reduces the above equation to a variable separable differential equation in v and x.

b) Solve
$$\frac{\mathrm{dy}}{\mathrm{d}x} = \frac{4x^3y^2 - 3x^2y}{x^3 - 2x^4y}.$$

a) Solve the differential equation $\dfrac{d^2y}{dx^2}+y=cotx$ by the method of variation of parameters. 23.

b) If y=x and $y=x^2-1$ are solutions of the corresponding homogeneous equation of

$$\left(x^2+1\right)rac{d^2y}{dx^2}-2xrac{dy}{dx}+2y=6\left(x^2+1
ight)^2$$
 , then compute the general solution.

Use Frobenius method to solve $x^2\frac{d^2y}{dx^2}+(x^2-3x)\frac{dy}{dx}+3y=0.$ 24.

a) Find the integral curves of $\frac{dx}{x+z} = \frac{dy}{y} = \frac{dz}{z+v^2}$ 25.

b) If u = f(x + iy) + g(x - iy) then show that u satisfies Laplace's equation.