

Reg. No	•
Namo :	

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, NOVEMBER 2024 2018, 2019, 2020, 2021 ADMISSIONS SUPPLEMENTARY

SEMESTER V - CORE COURSE (MATHEMATICS & COMPUTER APPLICATIONS) MT5B07B18 - Differential Equations

Time : 3 Hours Maximum Marks : 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. Determine the integrating factor of the form $x^p y^q {}_{of} \left(4xy^2+6y\right) dx + \left(5x^2y+8x\right) dy = 0$.
- 2. Recall on what factor does the number of arbitrary constants in the general solution of a differential equation depend.
- 3. Determine the general function A such that $(x^2+3xy)dx+(Ax^2+4y)dy=0$ is exact.
- 4. Evaluate the general solution $4\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + y = 0.$
- 5. Write the linear combination of functions with undetermined coefficients to form the particular integral of the given differential equation $\frac{d^2y}{dx^2} + 9y = e^{3x} + sin3x$ without actually solving it.
- 6. Compute the general solution of $\frac{d^5y}{dx^5}-2\frac{d^4y}{dx^4}+\frac{d^2y}{dx^2}=0$.
- 7. Evaluate the wronskian and check whether e^x and e^{2x} are linearly independent.
- 8. Define regular singular points.
- 9. Define gamma function
- 10. Define ordinary points.
- 11. Write the partial differential equation of $z=xy+f(x^2+y^2)$
- 12. Form the partial differential equation $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}.$

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

13. Solve
$$x siny dx + (x^2 + 1) cosy dy = 0$$
.

14. Solve
$$(2x^2y + y) dx + (2y^3 - x) dy = 0$$

15. Solve
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 3y = 0$$

16. Find the general solution of
$$x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}+4y=0.$$

Solve
$$\frac{dx}{dt} + \frac{dy}{dt} + 2y = sint,$$

$$\frac{dx}{dt} + \frac{dy}{dt} - x - y = 0.$$

18. Compute the power series solution of
$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} - 2y = 0, y(0) = 0, y'(0) = 1.$$

19. Solve the indicial equation of
$$2x\frac{d^2y}{dx^2} + \frac{dy}{dx} + 2y = 0.$$

20. Solve the partial differential equation
$$\frac{y^2z}{x}p + xzq = y^2.$$

21. Solve
$$y^2p - xyq = xz - 2xy$$

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

22.
$$\frac{dy}{dx} + \left(\frac{2x+1}{x}\right)y = e^{-2x}.$$

b) Solve
$$y^2 dx + (3xy - 1) dy = 0$$
.

23. Solve the differential equation
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 5y = 5sin2x + 10x^2 + 3x + 7$$
 using the method of undetermined coefficients.

Use the method of Frobenius to solve
$$x^2\frac{d^2y}{dx^2}-x\frac{dy}{dx}-(x^2+\frac{5}{4})y=0.$$

$$\frac{dx}{\text{a) Solve}}\,\frac{dx}{x^2(y^3-z^3)} = \frac{dy}{y^2(z^3-x^3)} = \frac{dz}{z^2(x^3-y^3)}.$$

b) Solve the partial differential equation
$$(y-z)\frac{\partial u}{\partial x} + (z-x)\frac{\partial u}{\partial y} + (x-y)\frac{\partial u}{\partial z} = 0$$
 , where u is a function in x,y,z.

