TB244500D

Reg. N	D :	••••••
Name		

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, MARCH 2024 2022 ADMISSIONS REGULAR SEMESTER IV - CORE COURSE (PHYSICS) PH4B04B18 - Electricity and Electrodynamics

Time: 3 Hours Maximum Marks: 60

Part A

I. Answer any Ten questions. Each question carries 1 mark

(10x1=10)

- 1. Prove that dimension of RC is equivalent to time.
- 2. Outline the features of an acceptor circuit.
- 3. Define the terms peak factor and form factor.
- 4. In magnetism, Biot-Savart law is well-known as ----- law of current element.
- 5. What happens to the charge after you charge a conducting metal?
- 6. Why does the temperature of a solid conductor increase when the conductor is carrying current?
- 7. State Coulomb's theorem.
- 8. Explain the physical interpretation of bound currents?
- 9. Derive an expression for the intensity of an electromagnetic wave.
- 10. Write the physical context of the statement $\nabla \cdot B = 0$.
- 11. Write down the features of sinusoidal waves.
- 12. Distinguish between active and passive electrical components.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

13. Establish the relation between true power and apparent power.

- calculate the flux of this field through a plane square area of edge 10 cm placed in the Y-Z plane. Take the

- 22. With the necessary theory, describe an experiment to determine the current sensitivity of a ballistic galvanometer.
- 23. Apply Gauss's theorem to find the electric field due to a cylindrical charge distribution, an infinite line of charge and a plane sheet of charge.
- 24. Derive all four Maxwell's equations from basic physics theorems. Explain how Maxwell modified Ampere's theorem.
- 25. Bring out the differences in strategies to arrive at the magnetic field due to a solenoid using Ampere's law and Biot Savart's law.

