TB244654R

Reg. No	*
B1	

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, MARCH 2024 2022 ADMISSIONS REGULAR

SEMESTER IV - Mathematics COMPLEMENTARY COURSE 2 (PHYSICS) PH4C01B18 - Physical Optics, Laser Physics and Dielectrics

Time: 3 Hours Maximum Marks: 60

Part A

I. Answer any Ten questions. Each question carries 1 mark

(10x1=10)

- 1. Give the relation between optical path length and geometrical path length of a light wave.
- 2. Write the expressions for maximum and minimum intensity, when two coherent waves of same amplitude interfere.
- 3. Comment on the colour of a parallel thin film when it is irradiated with white light.
- 4. Sketch the intensity pattern due to interference and diffraction.
- 5. Distinguish between various types of diffraction.
- 6. Distinguish between elliptically and circularly polarised light.
- 7. List any two differences between polarised and unpolarised light.
- 8. State the Planck's quantum hypothesis.
- 9. Express the relative population under thermal equilibrium. Explain.
- 10. Explain the formation of induced dipoles.
- 11. Distinguish between polar and nonpolar molecules.
- 12. Distinguish between Holography and Photography.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. In Newton's rings experiment, the diameter of nth dark ring is 0.293 cm. When a liquid is introduced between the glass plate and lens, it changes to 0.254 cm. Find the refractive index of the liquid.
- 14. What do you meant by acceptance angle of an optical fibre? Deduce its expression.
- 15. A parallel beam of monochromatic light is allowed to be incident on a plane grating 0.5cm wide with 625 lines , a second order spectral line is observed to be deviated through 30 degrees. Calculate the wavelength of the spectral line.
- 16. Calculate the thickness of a doubly refracting plate capable of producing a path difference of $\frac{\lambda}{4}$ between ordinary and extraordinary rays. Given $\lambda=5890 \mathring{A}$.
- 17. Plane- polarized light is incident on a single polarizing disk with the direction of E₀ parallel to the direction of the transmission axis. Through what angle should the disk be rotated so that the intensity in the transmitted beam is reduced by a factor of 3.
- 18. Discuss and compare various pumping schemes.
- 19. The wavelength of emission is $6000A^0$ and the lifetime τ_{sp} is $10^{-6}s$. Determine the coefficient for the stimulated emission.
- 20. Discuss the process of electronic polarization in materials.
- 21. Write a note on electric polarization vector of dielectric materials.

III. Answer any Two questions. Each question carries 10 marks

(2x10=20)

- 22. With necessary theory explain the experiment to determination of wave length of light using Newton's rings arrangement.
- 23. Explain the theory of plane diffraction grating and hence explain the experiment to determine the wavelength of light:
- 24. Discuss the production of linearly, circularly and elliptically polarized light using Huygen's theory of double refraction.
- 25. Discuss the working of a Ruby Laser with the help of suitable diagrams .

