16.4

Reg.	No	•

Name :.....

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, MARCH 2024 2022 ADMISSIONS REGULAR

SEMESTER IV - COMPLEMENTARY COURSE 1 (MATHEMATICS FOR PHYSICS & CHEMISTRY)
MT4C01B18 - Fourier Series, Partial Differential Equations, Numerical Analysis and Abstract Algebra

Time: 3 Hours Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. Write the equation to find half range Fourier Cosine series.
- 2. Express Cosine Series and Sine series in terms of Power series.
- 3. Find out the Bessel functions $J_0(x)$ and $J_1(x)$
- 4. Write the equation to find the tangent plane at a point P (x,y,z) to the surface S whose equation is F(x,y,z)=0.
- 5. Form a partial differential equation by eliminating the constants a and b from the equation $2z = (ax + y)^2 + b$
- 6. Find an integral curve of the equations : $\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{(x+y)z}$
- 7. Write Newton Raphson formula for finding an approximate root of f(x)=0
- 8. Is $5x^2 7x + 9x^6 + sin(x) = 34$ a transcendental equation? Justify your answer.
- 9. Define Symmetric group on n letters
- 10. If a and b are any two elements of a group G then show that $(a*b)^{-1}=b^{-1}*a^{-1}$
- 11. Is the group (Z₆, +₆) cyclic? Justify your answer.
- 12. Find the order of 5 in Z_6

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

13.

Find the Fourier series of f given by f(x) = x, $-\pi < x < \pi$ and $f(x) = f(x + 2\pi) \ \ \forall x \in R$.

- 14. Derive: $J_0'(x) = -J_1(x)$
- 15. Solve: y' = 2xy.
- 16. Obtain Fourier Sine series for the function $f(x)=c,\ x\in[0,\pi]$. Also deduce that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\dots$

- 17. Show that the family of spheres $x^2 + y^2 + (z c)^2 = a^2$ satisfies the first order PDE yP xq = 0.
- 18. Find a root of the equation 2x =cos x +3 correct to three decimal places by iteration method
- 19. Consider the map $\phi:Z\to R$ under addition defined by $\phi(x)=4x$. Check whether ϕ is a group homomorphism.
- 20. Show that $\leq \mathbb{R}, +, \cdot \geq$ is a ring where '+' is the usual addition, '.' is the usual multiplication and \mathbb{R} is the set of real numbers.

21. Check whether Z, the set of integers is an abelian group with respect to addition?

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

- 22. Find the two half range expansions of f(x) = x; 0 < x < L
- 23. (a) Form the partial differential equation by eliminating the constants from the equation $z=(x+a^2)(y+b^2)$
 - (b) Form the partial differential equation by eliminating the arbitraty function from $f(x+y+z,x^2+y^2+z^2)=0$.

(c) Find the integral curves of the equation
$$\frac{dx}{y+zx} = \frac{dy}{-(x+yz)} = \frac{dz}{x^2-y^2}.$$

- 24. Find the real root of $x^3-7x^2+10x-2=0$ using Quotient Difference method
- 25. (a). Define * on Q^+ by $a*b=\frac{ab}{2}$. Show that Q^+ under the operation * is an abelian group.
 - (b). Show that the set G ={1,-1, i, -i} forms an abelian group with respect to multiplication.

