Reg. N	lo :
Name	

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, MARCH 2024 2022 ADMISSIONS REGULAR

SEMESTER IV - CORE COURSE (MATHEMATICS)

MT4B04B18 - Vector Calculus, Theory of Equations and Matrices

Time: 3 Hours

Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- Define a binormal vector. 1.
- Find the parametric equation for a line through (1,1,1) parallel to z- axis.
- 3. Find an equation for the plane through P(2,4,5) and perpendicular to the line x = 5 + t, y = 1 + 3t, z = 4t.
- 4. Define potential function.
- Determine whether the differential form yzdx+xzdy+xydz is exact.
- Determine whether $\mathbf{\bar{F}} = (2x-3)\bar{i} z\bar{j} + (\cos z)\bar{k}$ is conservative.
- 7. Form an equation whose roots are 2 and 3+i.
- 8. Form an equation whose roots are the negatives of the roots of the equation $x^4-4x^3+6x^2-x+2=0$
- Find the equation whose roots are two less than the roots of the equation $x^4-5x^3+7x^2-4x+5=0$
- Define the rank of a matrix.

Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \end{bmatrix}$ 11.

 $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2 \end{pmatrix}$ 12.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Find the distance from (2,-3,4) to the plane x+2y+2z=13.
- 14. Write the acceleration in the form $\mathbf{a} = \mathbf{a}_T \mathbf{T} + \mathbf{a}_N \mathbf{N}$, $r(t) = (\cos t + t \sin t) \vec{i} + (\sin t t \cos t) \vec{j}$, t > 0.

15.
$$f(x,y) = \frac{x^3}{y} \text{ over the curve } C: y = \frac{x^2}{2}, 0 \le x \le 2$$

- 16. Find the surface area of the cone $z=\sqrt{x^2+y^2}$
- 17. Integrate g(x,y,z)=xyz over the surface of the cube cut from the first octant by the planes x = 1, y = 1 and z = 1
- 18. Solve the equation $x^4-2x^3+4x^2+6x-21=0$ given that two of its roots are equal in magnitude and opposite in
- 19. Solve $x^4-2x^3-3x^2+4x-1=0$ given that the product of two of its roots is unity.

20.
$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
 Find the eigenvalues and corresponding eigenvectors of the matrix

21.

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$

Verify Cayley - Hamilton Theorem for the matrix

Part (

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

- 22. Find T, N, B, κ, τ for the space curve $r(t) = 3\sin t \vec{i} + 3\cos t \vec{j} + 4t\vec{k}$.
- 23. Find the circulation of the field $\vec{F}=(x^2-y)\vec{i}+4z\vec{j}+x^2\vec{k}$ around the curve C in which the plane z=2 meets the cone $z=\sqrt{x^2+y^2}$
- 24. Show that on diminishing the roots of the equation $6x^4-43x^3+76x^2+25x-100 = 0$ by 2 it becomes a reciprocal equation and hence solve it.
- 25. a) Using Cayley Hamilton Theorem, show that $A^3-6A^2+11A-6I=0$. where

a) Using Cayley Hamilton Theorem, show that
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{bmatrix}$$
, and hence find A^{-1} .

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

b) Find the eigen values and the corresponding eigenvectors of the matrix

