TM244829R

Reg. No :....

Name :.....

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 2022 ADMISSIONS REGULAR SEMESTER IV - CHEMISTRY CH4E03TM20 - Advanced Physical Chemistry

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Describe Laue patterns and its use in crystallography.
- 2. Explain the symmetry element Mirror plane.
- 3. Indicate the Herman Manguin symbol for the following point groups: a) C_{2V} b) C_{3V} c) C_{4V}.
- 4. Explain the term "Nebulation".
- 5. Briefly explain Novel fluorophores.
- 6. Explain liquid junction potential? How can it be eliminated?
- 7. Calculate the EMF of the following Concentration cell at 298 K. $Cu(s)/Cu^{2+}$ (m=0.02, $\gamma=0.32$) // Cu^{2+} (m=0.2, $\gamma=0.11$)/Cu(s).
- 8. Distinguish between voltammetry and polarography.
- 9. Elaborate the thermodynamics of glycolysis.
- 10. Elucidate the relation between standard free energy change ΔGo' and equilibrium constant k'eq.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Discuss the photoconductivity of liquid crystals.
- 12. Explain the working of a Hollow cathode lamp.
- 13. Discuss the Lippmann equation for the change in interfacial tension of a metal-solution interface.
- 14. Derive the equation for membrane potential for two electrolyte solutions of different concentration separated by a membrane.
- 15. a) The standard electrode potential for a cell in which the following reaction: $2Fe^{3+}(aq) + 2I(aq) \rightarrow 2Fe^{2+}(aq) + I_2(s)$ occurs at 0.236 V at 298 K. Calculate (a) the standard Gibbs energy change (standard free energy change) and (b) the equilibrium constant for the cell reaction.
 - b) Calculate the EMF of the following cell at 298 K: $Mg(s)/Mg^{2+}(0.001M)/(Cu^{2+}(0.0001M)/Cu(s))$. Given: $E^{\circ}_{Mg}^{2+}/_{Mg} = -2.37 \text{ V}$; $E^{\circ}_{Cu}/_{Cu}^{2+} = +0.34 \text{ V}$.
- 16. What are the advantages of "dropping mercury electrode" in Polarography? Explain.
- 17. Derive the polarographic wave equation.
- 18. Comment on the entropy production and entropy flow in open systems.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. a) Compute the expression for structure factor, F(hkl) for (a) primitive cubic unit cell (b) FCC lattice (c) BCC lattice. b) Comment on strong and weak reflections.
- 20. Give an account of the principle and instrumentation of Atomic Absorption Spectroscopy. Discussimportant applications and limitations of this technique.

- 21. Explain corrosion in terms of Pourbaix diagram for a) water and b) Iron.
- 22. Discuss briefly the polarographic method of chemical analysis.

