| Reg. N | lo : |
|--------|------|
| Name   |      |

# BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, MARCH 2024

### **2022 ADMISSIONS REGULAR**

SEMESTER IV -B.Sc. Computer Applications (Triple Main) CORE COURSE (STATISTICS)
ST4B05B18 - Sample Survey and Design of Experiments

Time: 3 Hours

Maximum Marks: 80

#### Part A

## I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. Write down the expression for the variance of the estimate of the population mean in SRSWOR.
- 2. Write down the expression for the variance of the estimate of the population total in SRSWR.
- 3. Differentiate between SRSWR and SRSWOR.
- 4. Write down the expression for relative gain in precision of optimum allocation over proportional allocation.
- 5. Define systematic sampling.
- 6. Define strata in stratified sampling.
- 7. Write a short note on randomization.
- 8. Define estimability of a linear parametric function.
- 9. Define linear estimate.
- 10. What is local control in experimentation?
- 11. Write the linear model for ANOVA for CRD.
- 12. What is the use of Missing plot techniques?



#### Part B

## II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Prove that probability of a specified unit of the population being selected at any given draw is equal to the probability of it being selected at the first draw.
- 14. Write the principle steps in sample survey.
- 15. Distinguish between census and sampling.
- 16. Derive the variance of the estimate of optimum allocation subject to fixed variance.
- 17. Compare the variances of the estimates of optimum allocation and proportional allocation.
- 18. Explain the concept of experimentation.
- 19. Explain stochastic linear model.
- 20. Differentiate between RBD and LSD.
- 21. In an LSD, one observation is missing, obtain the formula to estimate it.

#### Part C

## III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

- 22. Derive the estimate of standard error of the estimate of population mean for SRSWR.
- 23. Derive any two ways of optimum allocation and derive its variance.
- 24. Explain ANOVA with linear model of one way classification and its table.
- 25. Explain the various steps for the analysis of an RBD with v treatments and b blocks with one observation per experimental unit. Assume y<sub>ij</sub> is the observation which receives j<sup>th</sup> treatment in i<sup>th</sup> block.