\qquad
Name: \qquad

B. Sc. DEGREE (C.B.C.S.S) EXAMINATION, JANUARY 2019
 (2016 Admission Supplementary)
 SEMESTER V- CORE COURSE (MATHEMATICS) MT5B07B - ABSTRACT ALGEBRA

Time: Three Hours
Maximum Marks: $\mathbf{8 0}$
PART A
I. Answer all questions. Each question carries 1 mark.

1. Give an example of an Abelian group of order four which is not cyclic.
2. Find the orderof $\langle\sigma\rangle$, the cyclic group generated by σ in S_{5} where $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 5 & 1\end{array}\right)$.
3. Find the Kernel of $\phi: Z \rightarrow Z_{5}$ defined by $\varphi(m)=r$, where r is the remainder when m is divided by 5 .
4. Find all cosets of the subgroup $4 Z$ of Z.
5. Define ring homomorphism.
6. Find all the units in the ring Z_{10}.

PART B

II. Answer any seven questions. Each question carries 2 marks.
7. Find the generators of the group Z_{6} under $+_{6}$.
8. Check whether the set $G=\{1,-1, i,-i\}$ forms an abelian group with respect to multiplication.
9. Find the number of generators of cyclic group of order 8 .
10. Find the orbits of the permutation $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 2 & 6 & 1 & 3\end{array}\right)$.
11. Find the number of odd permutations in the group S_{s}.
12. Prove that an isomorphism maps the identity onto the identity and inverses onto inverses
13. State the fundamental homomorphism theorem.
14. Prove that, a group homomorphism ϕ is one-one if and only if Kernel of ϕ is $\{\mathrm{e}\}$.
15. Define an Integral Domain.
16. Solve $x^{2}-5 x+6=0$ in Z_{12}.

PART C

III. Answer any five questions. Each question carries 6 marks.

17. Show that every group G with identity e and such that $x * x=e$ for all $x \in G$ is abelian.
18. Prove that identity element and inverse of each element are unique in a group G.
19. Prove that every group of prime order is cyclic.
20. Show that the number of even permutations in S_{n} is the same as the number of odd
permutations.
21. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism, let $\mathrm{H}=\operatorname{Ker} \phi$. Let $a \in G$. Then the set $\phi^{-1}[\{\phi(a)\}]=\{x \in G \mid \phi(x)=\phi(a)\}$ is the left coset aH of H .
22. Let H be a normal subgroup of G. Then show that the cosets of H form a group G / H under the binary operation $(\mathrm{aH})(\mathrm{bH})=(\mathrm{ab}) \mathrm{H}$.
23. Prove that in the ring Z_{n}, the divisors of 0 are precisely those numbers that are not relatively prime to n.
24. Prove, if p is a prime, then Z_{p} is a field.
(5x6=30)

PART D

IV. Answer any two questions. Each question carries 15 marks.
25. a) Let G be a cyclic group with generator a. If the order of G is infinite, then G is isomorphic to $(Z,+)$. If G has finite order n, then G is isomorphic to $\left(Z_{n}, t_{n}\right)$.
b) Find the cyclic subgroup generated by $\langle i\rangle$ of the group of non-zero complex numbers under multiplication.
26. a) Let A be any nonempty set and let S_{A} be the collection of all permutations of A. Prove that S_{A} is a group under permutation multiplication.
b). State and prove Cayley's Theorem.
27. a) Let H be a subgroup of G . Let the relation \sim be defined on G by $\mathrm{a} \sim \mathrm{b}$ if and only if $a^{-1} b \in H$. Show that \sim is an equivalence relation on G .
b) State and prove Lagrange's Theorem.
28. a). Prove that a factor group of a cyclic group is cyclic
b). Prove that M is a maximal normal subgroup of G iff G / M is simple.

