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Introduction

The graphs are the perfect representation of the relationship among the data. This

concept was introduced by the great mathematician L. Euler, often known as the

father of graph theory when he famously solved the Koingsberg bridge problem in

1736. but since the graph can only capture the interaction between pairs of ver-

tices, they fall short in many cases and they are not able to model the complexity

in some networks. To overcome this limitation, C. Berge introduced hypergraphs

in 1961, allowing edges to encompass any number of vertices. cluster hypergraph

is introduced to generalized hypergraph in which clustering of nodes is allowed

and this development was done by Samanta El in 2020.

In this project on cluster hypergraphs, we first deal with the basic terminologies

related and the association of a hypergraph with a graph, along a real-world exam-

ple. Then we move on to the basic definition, and types of cluster hypergraphs and

its completeness property. With a brief discussion on competition hypergraphs,

we conclude the conceptual discussion to showcase two applications, one on cluster

hypergraph and the other on competition cluster hypergraph.
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PRELIMINARIES

0.1 Semi-directed Graph

Let V be a nonempty set of elements, called vertices or nodes. Also, let E =

E1 ∪
−→
E 2 where E1 ⊂ V × V is a set of unordered pairs of vertices, i.e., E1 =

{(u, v) | u, v ∈ V }, called a set of undirected edges, and
−→
E 2 ⊂ V × V is a set of

ordered pairs of vertices,
−→
E 2 = {(a, b) | a, b ∈ V }, called a set of directed edges.

Here, G = (V,E1,
−→
E 2), is said to be a semidirected graph.

0.1.1 Degree

The degree of a vertex u is denoted as a triplet D(u) = (d(u), d+(u), d−(u)) where

d(u) is the number of all incident edges of u in E1, d
+(u) is the number of out-

directed edges of
−→
E 2 from the vertex u, and d−(u) is the number of in-directed

edges of
−→
E 2 towards the vertex u. Now, the incidence number of a vertex u is

denoted as in(u) and defined as in(u) = d(u) + d+(u)− d−(u).

Example

Figure 1: Semi-directed graph

2



0.1. Semi-directed Graph CLUSTER HYPERGRAPH

The degree of a vertex of the graph, as shown in Figure 1, is given as D(a) =

(2,1,1). Now, the incident number is in (a) = 2+1-1 = 2.

0.1.2 Complete Semi-directed Graph

In a semi-directed graph, if there are all three types of connections i.e., out-directed

edges, in-directed edges, and undirected edges between any two vertices. then the

graph is called a complete semi-directed graph.

0.1.3 Complete Incident Semi-directed Graph

A semi-directed graph is said to be a complete incidence semi-directed graph if

every pair of vertices is connected by at least one edge (undirected or directed),

and the incidence number of all vertices is equal.

Example

Figure 2

In Figure 2, there are connections (undirected or directed) between every pair

of vertices and the incidence number of each of the vertices is 3, it is a complete-

incidence semidirected graph.

0.1.4 Neighbourhood, Out-neighbourhood, In-neighbourhood

Neighborhood, out-neighborhood, and in-neighborhood of a vertex u in a semidi-

rected graph G = (V,E1,
−→
E 2) are denoted as N(u), N+(u), and N−(u) and defined

as follows:

N(u) = {v ∈ V | (u, v) ∈ E1}

N+(u) = {v ∈ V | (u, v) ∈
−→
E 2}

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam 3



0.1. Semi-directed Graph CLUSTER HYPERGRAPH

N−(u) = {v ∈ V | (v, u) ∈
−→
E 2}

Example

Figure 3

From Figure 3, we get:

N(d) = {e},

N+(d) = {a, b, c},

N+(e) = {b, c},

N−(d) = {a, b},

N−(e) = {a, b, c}.

Thus, N+(d) is a maximal out-neighborhood set and N−(e) is a maximal in-

neighborhood set of the semidirected graph assumed in Figure 3.

0.1.5 m-step Neighborhood, m-step Out-neighborhood, m-step In-neighborhood

The m-step neighbourhood, m-step out-neighbourhood and m-step in-neighbourhood

of a vertex u in a semidirected graph G = (V,E1,
−→
E 2) are denoted as Nm(u),

N+
m(u), and N−

m(u) and defined as follows:

Nm(u) = {vm ∈ V : for all paths such that u− v1 − v2 − · · · − vm},

N+
m(u) = {vm ∈ V : for all paths such that u→ v1 → v2 → · · · → vm},

N−
m(u) = {vm ∈ V : for all paths such that u← v1 ← v2 ← · · · ← vm}.

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam 4



0.1. Semi-directed Graph CLUSTER HYPERGRAPH

Example

In Figure 3, N2(d) = ∅, N+
2 (d) = {e}, and N−

2 (d) = {e}.

0.1.6 m-step Semi-directed Graph

The m-step semi-directed graph Gm = (Vm, E
1
m,
−→
E 2

m) of a semi-directed graph

G = (V,E1,
−→
E 2) is defined as follows:

1. Vertex set of Gm is Vm = V

2. Edge set of Gm is E1
m = {(u, vm) : vm ∈ Nm(u)} ,

−→
E 2

m = {(u, vm) : vm ∈

N+
m(u)orN

−
m(u)}

Example

Figure 4: 2-step semi-directed graph of figure 3

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam 5



Chapter 1

HYPRGRAPH

1.1 Hypergraph

Let X = {x1, x2, . . . , xn} be a finite set, and let E = {e1, e2, . . . , em} be a family

of subsets of X such that ei ̸= ∅ for i = 1, 2, . . . ,m. We have
∑m

i=1 ei = X.

The pair H = (X,E) is called a hypergraph with vertex set X and hyperedge set

E. The elements {x1, x2, . . . , xn} of X are vertices of hypergraph H, and the sets

{e1, e2, . . . , em} are hyperedges of hypergraph H.

1.1.1 Example

Figure 1.1: Hypergraph

Here set {A, B, C} are the hyperedges and set {a,b,c,d,e,f,g} are the vertices

of the above hypergraph. where the hyperedge A contains the vertices {a,b,c}.

similarily the hyperedges B and C contain the vertices {c,d,e} and {e,f,g}.

6



1.2. Terminology CLUSTER HYPERGRAPH

1.2 Terminology

1.Order of a hypergraph: Is the total number of vertices in a hypergraph. In

Figure 1.1 order of the hypergraph is seven.

2.Size of a hypergraph: Is the total number of edges in a hypergraph. In Figure

1.1 size of the hypergraph is three.

3.Incident: A vertex v is said to be incident to an edge e if v ∈ e, similarly an

edge e is said to be incident to a vertex v if v ∈ e. In Figure 1.1 vertex b is incident

to hyperedge A and hyperedge A is incident to vertex b. since b ∈ A.

4.Pendant vertex: A vertex incident to exactly one edge. Then that vertex is

called the incident vertex. No pendant vertex in Figure 1.1

5.Included edge: Included edge is an edge that is the subset of another edge.

No included edge in Figure 1.1.

6.Multiple edges : An edge that has the same set of vertices as another edge.

7.Loop:Hyperedge with a single vertex

8.Simple hypergraph: Hypergraph without loops, included edges, multiple

edges. Hypergraph in the Figure 1.1 is not a simple hypergraph

1.3 Graph And Hypergraph Association

1.3.1 Clique Graph Of A Hypergraph

Let H = (V,E) be a hypergraph. we define the clique graph G(H) as a simple

graph on V, with an edge between u, v ∈ V if there is a hyperedge e ∈ E with

u, v ∈ e. The name clique graph comes from the fact that if {v1, v2, .., vn} is a

hyperedge in H, then v1, v2, .., vn form a clique in G.

Example

Figure 1.2: Hypergraph H and clique graph G(H)

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam 7



1.4. Complex Networks As Hypergraph CLUSTER HYPERGRAPH

1.3.2 Maximal Hypergraph Associated To Graph

Let G = (V,E) be a simple graph. Let

C1, . . . , Ck

be the maximal cliques of G, and let E1 = {{u, v} : u, v ∈ Ciforsomei},

E2 = {C1, . . . , Ck}

The maximal hypergraph associated H(G) to G, is a hypergraph on V with hy-

peredges (E \ E1) ∪ E2

Example

Figure 1.3: Graph G and maximal hypergraph H(G)

1.4 Complex Networks As Hypergraph

The study of complex networks represents an important area of multidisciplinary

research involving physics, mathematics, chemistry, biology, social sciences, and

information sciences, among others. These systems are commonly represented

utilizing simple or directed graphs that consist of sets of nodes representing the

objects joined together in pairs by links if the corresponding nodes are related by

some kind of relationship. In some cases, the use of simple or directed graphs

to represent complex networks does not provide a complete description of the

real-world systems. A natural way of representing these systems is to use a gen-

eralization of graphs known as hypergraphs.

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam 8



1.4. Complex Networks As Hypergraph CLUSTER HYPERGRAPH

1.4.1 Real-life Example of Hypergraph

An example of complex systems for which hypergraph representation is necessary

is the food web.

Trophic relations in ecological systems are normally represented through the use of

food webs, which are oriented graphs (digraphs) where the species is represented

by the nodes and links represent trophic relations between species. Another way

of representing food webs is employing competition graphs C(G ), which have the

same set of nodes as the food web but two nodes are connected if, and only if,

the corresponding species compete for the same prey in the food web. In the

competition graph, we can only determine if two connected species share any prey

in common, but it doesn’t provide any information about the composition of the

whole group of species that compete for common prey. To solve this problem a

competition hypergraph has been proposed in which species are represented by the

nodes in the food web and groups of species are represented by the hyperedges.

In which the group of species competes for common prey. It has been shown that

in many cases competition hypernetworks yield a more detailed description of the

predation relations among the species in the food web than competition graphs.

A food web and its competition network and hyper-network are illustrated in Fig

below

Figure 1.4: food web

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam 9



1.4. Complex Networks As Hypergraph CLUSTER HYPERGRAPH

Figure 1.5: Competence network of food web

Figure 1.6: Competence hypergraph of figure 1.5

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam 10



Chapter 2

CLUSTER HYPERGRAPH

2.1 Cluster Hypergraph

Let X be a nonempty set, and let Vx be a subset of P(X) such that

1. ϕ /∈ E.

2. For each element e ∈ E, there exists at least one element v ∈ Vx such that

v ∈ e.

Then, G = (Vx, E) is said to be a cluster hypergraph where Vx is the vertex set

and E is the multi-hyperedge set.

Example

Figure 2.1

Let X = {A,B,C,E, F,G}, Vx = {{A}, {B}, {C}, D = {B,C}, H = {F,G},

{E}, {F}, {G}}, and E = {{{A}, {B}}, {{A}, {E}}, {{B,C}, {B}}, {{B,C},

{C}}, {{F}, {G}}, {{F,G}, {F}}, {{F,G}, {G}}, {F,G}, {B,C}}. It can be eas-

ily verified that for each element e in E, there exists an element v ∈ Vx such that

11



2.1. Cluster Hypergraph CLUSTER HYPERGRAPH

v ∈ e. For example {{A}, {E}} in E, there exists an element {A} in Vx such that

{A} ∈ {{A}, {E}}.

Remark

1. The vertex set of a cluster hypergraph may contain a group of people/individuals

as a node (cluster node), and all the people in the network are assumed as

simple nodes. This concept is helpful to assume any organization or group

as a node in any network. Also, it is assumed that each node inside a cluster

node is automatically connected to the cluster node, but these inside nodes

may not be connected.

2. In the virtual representation of any cluster hypergraph, the cluster nodes are

assumed as separate nodes, and their connections in representation are shown

below, which is the virtual representation of Figure 2.1.

Figure 2.2

2.1.1 Degree

Let X = {x1, x2, . . . , xm} be a non-empty set and G = (VX , E) be a cluster

hypergraph where VX = {v1, v2, . . . , vn} is the set of nodes, i.e., vi ∈ P(X) for

i = 1, 2, . . . , n, and E = {e1, e2, . . . , ek} is the set of edges, i.e., ei ∈ P(P(X)) for

i = 1, 2, . . . , k.

The degree of node vi contained in the edges eij, j = 1, 2, . . . , p, denoted as

d(vi), is defined as:

d(vi) = |
p∑

j=1

eij|

Example

In the cluster hypergraph (figure 2.1) degree of c is 1.

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam 12



2.1. Cluster Hypergraph CLUSTER HYPERGRAPH

Theorem

Let G = (VX , E) be a cluster hypergraph where |X| = k. Then, the total degree

of the cluster hypergraph is less than (2k − 1) · 22k−2.

Proof:

Let G = (VX , E) be a cluster hypergraph where |X| = k. Thus, the maximum

number of nodes of G is 2k − 1. Now, in cluster hypergraphs, there may be

edges containing a single node, double nodes, and so on. Thus, the contribution

of edges containing n nodes is n× (number of edges). Therefore, the maximum

contribution of all edges is

1

(
2k − 1

1

)
+ 2

(
2k − 1

2

)
+ 3

(
2k − 1

3

)
+ . . .+ (2k − 1)

(
2k − 1

2k − 1

)
.

Hence the result.

The number of connections to a node is termed as the degree of the node. If

the node is in any of the cluster nodes then the node has a separate effect of

connection. For this, we introduced and defined another term for the node, an

effective node.

2.1.2 Effective Degree

Let X = {x1, x2, . . . , xm} be a non-empty set and G = (VX , E) be a cluster

hypergraph where VX = {v1, v2, . . . , vn} is the set of nodes, i.e., vi ∈ P(X) for

i = 1, 2, . . . , n, and E = {e1, e2, . . . , ek} is the set of edges, i.e., ei ∈ P(P(X)) for

i = 1, 2, . . . , k.

Also, let CVi be the cluster node containing the simple node Vi. Now, the

effective degree of a simple node Vi is denoted as ed(Vi) and is defined as:

ed(Vi) = d(Vi) +
1

l

p∑
i=1

d(CVi)

where l is the number of cluster nodes containing Vi.

Example

In the cluster hypergraph (Figure 1.1), the degree of node C is 1, but the effective

degree of node C is 1 + 2
1
= 3.

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam 13



2.2. Types Of Cluster Hypergraph CLUSTER HYPERGRAPH

Theorem

Let G = (VX , E) be a cluster hypergraph where |X| = k. Then, the total effective

degree of the cluster hypergraph is less than δ + (2k − 1)(2k − 2), where δ is the

sum of the maximum degrees of nodes, and l is the number of cluster nodes in the

hypergraph.

Proof:

Let G = (VX , E) be a cluster hypergraph where X = (x1, x2, . . . , xk). Thus, the

maximum number of nodes of G is 2k − 1. Now, an effective degree is

ed(xi) = d(xi) +

∑l
l=1 d(cxi

)

l

where l is the number of cluster nodes containing xi. Here, the sum of the effective

degree is

k∑
i=1

ed(xi) =
k∑

k=1

[
d(vi) +

(
k∑

i=1

d(cxi
)

l

)]
=

k∑
i=1

d(vi) +
k∑

i=1

(∑k
k=1 d(cxi

)

l

)

Let us suppose the total number of cluster nodes in the hypergraph is l. Now, the

degree of a cluster node is always less than 2k − 2. Thus, the sum of the degrees

of all cluster nodes is less than or equal to l×2k−2. One simple node may belong

to all cluster nodes. Thus, the sum of all effective degrees is less than or equal to

δ + (2k − 1)(2k − 2), where δ = (2k − 1)22
k−2

and l is the number of cluster nodes

in the hypergraph. Hence, the result is true.

2.2 Types Of Cluster Hypergraph

Depending on the cluster node sizes and their edges, cluster hypergraphs are

classified into different categories. To classify, maximal nodes are to be defined.

The maximal nodes are those nodes that are not contained in any other cluster

nodes. A simple node may be termed a maximal node if it does not belong to any

other node.

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam 14



2.2. Types Of Cluster Hypergraph CLUSTER HYPERGRAPH

Figure 2.3

In Figure 2.3 the node f is simple as well as maximal but the node a,b,d,c is

maximal.

Figure 2.4: virtual representation of figure 2.3

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam 15



2.2. Types Of Cluster Hypergraph CLUSTER HYPERGRAPH

2.2.1 Uniform Cluster Hypergraph

Figure 2.5: (2,3)-uniform cluster hypergraph

The cluster hypergraph is called (m,n) uniform cluster hypergraph if each edge

contains m maximal nodes and there will be n simple nodes in each maximal node.

Figure 2.6: virtual representation of figure 2.5

2.2.2 Cluster Connected Cluster Hypergraph

A cluster hypergraph is said to be a cluster-connected cluster hypergraph (CCCH)

if only the maximal nodes are connected by an edge. For an example consider the

figure 2.3 which is a cluster connected cluster hypergraph. Where each maximal

nodes are connected to its internal nodes.

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam 16



2.3. Completeness Property Of Cluster Hypergraph CLUSTER HYPERGRAPH

2.3 Completeness Property Of Cluster Hypergraph

LetX be a non-empty set containing n elements. A cluster hypergraph G(V,E) on

X contains maximum |P (X)−∅| number of vertices, i.e., |V | = 2n−1, and for the

complete cluster hypergraph, the number of edges is |P (P (X)−∅)−∅| = 22
n−1−1.

The completeness properties of different types of cluster graphs are discussed as

follows.

2.3.1 Complete CCCH

Figure 2.7: Complete CCCH

A cluster hypergraph is called complete CCCH if any two maximal nodes are

connected by an edge. The above example shows a complete CCCH

2.3.2 Complete Uniform Cluster Hypergraph

Figure 2.8: Complete uniform Cluster Hypergraph

A complete uniform cluster hypergraph is a (m,n) uniform cluster hypergraph

if any two edges are connected by an edge. An edge also connect any two simple

nodes within the maximal nodes.The above figure shows a complete (2,3) uniform

cluter hypergraph.
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2.3. Completeness Property Of Cluster Hypergraph CLUSTER HYPERGRAPH

Theorem

A complete (m,n) -uniform cluster hypergraph having x cluster nodes contains

x×
(
n
m

)
+
(

x
m

)
edges.

Proof Let us consider a complete (m,n)-uniform cluster hypergraph having x

cluster nodes. The hypergraph has x cluster nodes containing n nodes per cluster.

Thus, the total number of simple nodes is x × n. Also, the graph is complete.

Therefore, each edge contains exactly m nodes. Hence, the total number of edges

per cluster is
(
n
m

)
. Also, the total number of edges among x clusters is

(
x
m

)
. Thus,

the total number of edges in a complete (m,n)-uniform cluster hypergraph having

x cluster nodes contains x×
(
n
m

)
+
(

x
m

)
edges.
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Chapter 3

COMPETITION CLUSTER

HYPERGRAPH

3.1 Competition Cluster Hypergraph

Competition cluster hypergraphs of semidirected graphs are characterized by the

adjacency of vertices connected by undirected edges forming a cluster. When these

adjacent vertices share common out-directed neighbors, they are also considered

adjacent in competition cluster hypergraphs. The formal definition is provided

below.

3.1.1 Definition

Let G = (X,E1, E⃗2) be a semi-directed graph where X is a nonempty vertex set,

E1 is the set of undirected edges, and E⃗2 is the set of directed edges. Now, the

competition cluster hypergraph of G is denoted as C(G) = (Vx, E) where Vx ⊆

P(X) is the vertex set of C(G) such that X ⊆ Vx, {xi, xj} ∈ Vx if (xi, xj) ∈ E1,

and {x1, x2, . . . , xm} ∈ Vx if {x1, x2, . . . , xm} forms a maximal clique in G and E

which is the hyperedge set if there exists an edge containing vertices x1, x2, . . . , xm

and N+(x1) ∩N+(x2) ∩ . . . ∩N+(xm) ̸= ∅ and m = 2, . . . , |X|.
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3.1. Competition Cluster Hypergraph CLUSTER HYPERGRAPH

Example

Figure 3.1: semidirected graph and the corresponding competition cluster hypergraph

Consider a semidirected graph depicted in Figure 3.1(a). The associated com-

petition cluster hypergraph is illustrated in Figure(b). In this semidirected graph,

let X = {a, b, c, d, e, f}, and note that {e, f, c} forms a clique. Consequently,

the vertex set of the corresponding competition hypergraph is denoted as Vx =

X∪{e, f, c}. Furthermore, observe thatN+(a)∩N+(b) = {a} andN+(a)∩N+(b)∩

N+(f) = {d}. Thus, the set of edges in C(G) is represented as E = {ab, abf}.

3.1.2 Proposition

Let G = (X,E1, E⃗2) be a semi-directed graph, and let the corresponding compe-

tition cluster hypergraph of G be denoted as C(G) = (VX , E). The number of

edges in C(G) is equal to the number of a maximal in-degree set of vertices in G

with cardinality greater than one.

Proof

Let G = (X,E1, E⃗2) represent a semidirected graph with X as a non-empty set

of vertices. Denote the corresponding competition cluster hypergraph of G as

C(G) = (VX , E). In competition cluster hypergraphs, an edge is formed between

two vertices x and y if they share at least one common vertex in the semi-directed

graph. Moreover, if a third vertex, denoted as z, shares the same common vertex,

then the edge will encompass all three vertices x, y, and z, and so forth. Hence,

the number of edges in C(G) equals the count of maximal in-degree sets of vertices

in G with a cardinality exceeding one.
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3.2. m-step Competition Cluster Hypergraph CLUSTER HYPERGRAPH

3.1.3 Remark

Consider a semi directed graph G = (X,E1, E⃗2) and the corresponding compe-

tition cluster hypergraph of G be denoted as C(G) = (Vx, E). The number of

cliques formed by undirected edges in G is equal to the number of cluster nodes

in C(G).

3.1.4 Theorem

Let G = (X,E1, E⃗2) be a semidirected graph and the corresponding competition

cluster hypergraph of G be C(G) = (Vx, E). The number of maximal nodes in

C(G) is equal to the sum of nodes that are not adjacent to other vertices by

undirected edges in G + (the number of undirected edges that are not part of any

cliques in G) + (number of maximal cliques in G)

Proof

Let G = (X,E1, E⃗2) be a semi-directed graph where X is a nonempty vertex

set and let the corresponding competition cluster hypergraph of G is denoted as

C(G) = (Vx, E).

Case 1: E1 = ∅: If the semi-directed graph G has no undirected edges, then each

node in C(G) is a simple node. Hence, the statement is obvious.

Case 2: E1 ̸= ∅: In this case, G contains undirected edges. These edges may

construct maximal cliques or simple undirected edges. Each maximal clique in G

will correspond to one cluster node in C(G). The undirected edges that are not

part of any cluster also correspond to cluster nodes containing two simple nodes.

Hence, the number of maximal nodes in C(G) is equal to the number of nodes

that are not adjacent to other vertices by undirected edges in G, + the number of

undirected edges that are not part of any cliques in G, + the number of maximal

cliques in G

3.2 m-step Competition Cluster Hypergraph

The m-step competition cluster hypergraph of G denoted as Cm(G) = (Vx, E),

is defined as follows. Let G = (X,E1, E⃗2) be a semi-directed graph, where X

is a nonempty vertex set, E1 is the set of undirected edges, and E⃗2 is the set

of directed edges. The vertex set of Cm(G), denoted as VX , is a subset of the
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3.3. Isolated Node CLUSTER HYPERGRAPH

power set of X, such that X ⊆ VX . An element {xi, xj} ∈ VX if (xi, xj) ∈

E1, and {x1, x2, . . . , xm} ∈ VX if {x1, x2, . . . , xm} forms a maximal clique in G.

The hyperedge set E consists of hyperedges containing vertices x1, x2, . . . , xm if

N+
m(x1) ∩N+

m(x2) ∩ . . . ∩N+
m(xm) ̸= ∅, where m = 2, . . . , |X|.

Example

Figure 3.2

Figure 3.3: 2-step competition cluster hypergraph

Consider a semi-directed graph, as shown in Figure 3.2, and the corresponding

2-step competition cluster hypergraph Cm(G) is shown in Figure 3.3. In the semi-

directed graph, X = {a, b, c, d, e}, and also the undirected edge joining d and e

∈ E1. So, the vertex set of the corresponding 2-step competition hypergraph is

Vx = X ∪ {d, e}. Now, N+
2 (a) ∩ N+

2 (c) = {b}. Thus, the edge set of Cm(G) is

E = {ac}.

3.3 Isolated Node

A node is called an isolated node in a cluster hypergraph if there don’t exist edges

to that node from other nodes in the graph.
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3.4. Competition Number CLUSTER HYPERGRAPH

3.3.1 Isolated Maximal Node

Figure 3.4: Cluster hypergraph with two isolated nodes

A maximal node (simple or cluster) becomes a maximal isolated node when it

has no incident edges, i.e. it is entirely disconnected from all other maximal nodes

within the cluster hypergraph. In Figure 3.4, we can identify that the singleton

set {k} and the clusters D = {{g} {h}} are examples of such isolated maximal

nodes.

3.3.2 Isolated Node In A Cluster

Figure 3.5: cluster hypergraph with one isolated node

Within a cluster hypergraph, a simple node might exist in isolation within a

cluster node. Consider a cluster hypergraph as shown in Figure 3.5, it becomes

evident that the only node {c} stands as an isolated entity within the cluster

F = {{c}, {b}}.

3.4 Competition Number

Consider a cluster hypergraph G. Then, the competition number k of G is the

minimum number of k maximal isolated nodes with G which form the competition
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3.4. Competition Number CLUSTER HYPERGRAPH

graph of a semidirected graph.

3.4.1 Algorithm

The steps to find the competition number of a cluster hypergraph are given as

follows:

Step 1. Consider a cluster hypergraph G

Step 2: Construct the necessary directed or undirected edges to create a corre-

sponding semi-directed graph G’ from the original hypergraph G.

Step 3: If additional nodes are required to achieve C(G’) = G, consider these

nodes as isolated nodes.

Step 4. The minimum number of maximal isolated nodes will be the competition

number of G

3.4.2 Example

Figure 3.6: A cluster hypergraph G

Figure 3.7: Corresponding semi-directed graph of G

let cluster hypergraphG = (Vx, E) (figure:3.6), where Vx = {{a}, {b}, {a, b}, {c}}

and E = {{{c}, {b}}}, we can construct the corresponding semi-directed graph

(figure:3.7). Notably, there are no isolated nodes in this graph. Consequently, the

competition number of G is 0.
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3.5. Proposition CLUSTER HYPERGRAPH

3.4.3 Proposition

The competition number of a (2,2)-uniform cluster hypergraph is zero.

Proof

Consider a (2,2)-uniform cluster hypergraph. We need to prove that its com-

petition number is zero.

since each hyperedge contains exactly two vertices and each vertex is incident to ex-

actly two edges. let’s start drawing the corressponding semi-directed graph.where

two vertices are adjacent if and only if they belong to a common hyperedge. And

also each hyperedge has atmost one vertex common. Therefore, no isolated vertex

in the graph. which implies competition number is equal to zero.

This complete the proof

3.5 Proposition

Let G be a semi-directed graph and Gm be the m-step semi-directed graph of G,

then C(Gm) = Cm(G).

Proof

Given a semi-directed graph G and its m-step semidirected graph Gm, we note that

both graphs share the same vertex set. Suppose (u, v) belongs to the competition

cluster ofGm. Then, there exist edges
→

(u, x1),
→

(v, x1);
→

(u, x2),
→

(v, x2); . . . ,
→

(u, xn),
→

(v, xn)

for some integer n. Now consider the intersection of the out-neighborhoods of u

and v, denoted as N+(u)N+(v), which consists of nodes x1, x2, . . . , xn. Since

an edge (u, x1) in Gm implies the existence of a path of length m from u to

x1, andsimilarly, for(v, x1)inGm, we conclude that (u, v) belongs to the Cm(G).

Conversely, if an edge (x, y) is in Cm(G), then C(Gm) = Cm(G).
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Chapter 4

APPLICATION

I am working on two applications: one involves the use of cluster hypergraphs,

and the other involves the application of competition cluster hypergraphs.

4.1 Cluster Hypergraph

I demonstrate the application of cluster hypergraphs to a real-life problem by

examining five types of cancer and their top 10 mutated genes. The collected data

is presented in Table 1. In this representation, genes are depicted as nodes or

vertices, cancers are depicted as clusters of nodes, and tumor suppressor genes are

depicted as hyperedges.

CANCERS GENES
OVARIAN CANCER PIK3CA, CTNNB1, OPCML, BRCA1, BRCA2, TP53, PTEN,

BRAF,ATM, EGFR
PANCREATIC CANCER SMAD4, TP53, KRAS, BRCA1, BRCA2, ATM, CHEK2, STK11,

TSC1, PTEN
PROSTATE CANCER PTEN, CHEK2, CDH1, BRCA2, KLF6, ZFHX3, MAD1L1,

HOXB13, ATM, TP53
BREAST CANCER BRCA2, RAD51, PIK3CA, ATM, BARD1, TP53, RAD54L,

CHEK2, KRAS, BRCA1
BLADDER CANCER FGFR3, RB1, ATM, KRAS, TP53, EGFR, PTEN, BRCA1,

PIK3CA, CTNNB1

Table 4.1: TABLE 1

The tumor suppressor genes among the 25 genes in our data include BRCA2,

TP53, BRCA1, BRCA2, PIK3CA, PTEN, and CDH1.
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4.1. Cluster Hypergraph CLUSTER HYPERGRAPH

The cluster hypergraph obtained from the data above is as follows:

Figure 4.1: Cluster hypergraph of our data

Now degree and effective degree are calculated for the above clustering hyper-

graph. The degree and effective degree calculation are shown in the following

table.
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4.1. Cluster Hypergraph CLUSTER HYPERGRAPH

GENES DEGREE EFFECTIVE DEGREE
KRAS 3 3+(30)/3 = 13
PIK3CA 4 4+(30)/3 = 14
TP53 6 6+(50)/5 = 16
EGFR 2 2+(20)/2 = 12
ATM 5 5+(50)/5 = 15

BRCA1 5 5+(50)/5 = 15
BRCA2 5 5+(50)/5 = 15
CHEK2 3 3+(30)/3 = 13
CTNNB1 2 2+(20)/2 = 12
PTEN 5 5+(40)/4 = 15
OPCML 1 1+(10)/1 = 10
BRAF 1 1+(10)/1 = 10
RAD51 1 1+(10)/1 = 10
BARD1 1 1+(10)/1 = 10
RAD54L 1 1+(10)/1 = 10
CDH1 1 1+(10)/1 = 10
KLF6 1 1+(10)/1 = 10
ZFHX3 1 1+(10)/1 = 10
MAD1L1 1 1+(10)/1 = 10
HOXB13 1 1+(10)/1 = 10
FGFR3 1 1+(10)/1 = 10
RB1 1 1+(10)/1 = 10

SMAD4 1 1+(10)/1 = 10
STK11 1 1+(10)/1 = 10
TSC1 1 1+(10)/1 = 10

Table 4.2: TABLE 2

Figure 4.2: COMPARISON BETWEEN DEGREE AND EFFECTIVE DEGREE

By observing the comparison between the degree and effective degree, it is

evident that the gene with the highest degree also possesses the highest effective

degree. This can be attributed to our consideration of only the top ten genes

for each cancer, resulting in each cluster containing ten genes. moreover, our

attention was also directed toward tumor suppressor genes among the datasets
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4.2. Competition Cluster Hypergraph CLUSTER HYPERGRAPH

of genes. Notably, TP53 emerges as the gene with the highest effective degree.

Consequently, we identify TP53 as the most important gene among the five cancers

when focusing on their top 10 mutated genes.

4.2 Competition Cluster Hypergraph

The network is designed to represent COVID-19-affected areas and their competi-

tion. Affected places are nodes in a semidirected graph, with ”COVID-19” as the

source node. Additionally, major carbon emission countries are included in this

network, with a source node labeled ”carbon emission”. Undirected edges connect

the countries that are affected by the same country, and directed edges are from

both source nodes to all other nodes in the network.

COUNTRY TOTAL CASES AFFECTED FROM
USA 98,525,870 China
India 44,676,087 China
France 37,716,837 China

Germany 36980,883
Brazil 35,751,411

Table 4.3: Top 5 COVID-19 affected countries

COUNTRY CO2Emission
China 12667.43
US 4853.78
India 2693.03
Russia 1909.04
Japan 1082.65

Indonesia 692.24
Iran 686.42

Germany 673.60
South Korea 635.50
Saudi Arabia 607.91

Canada 582.07
Mexico 487.77
Turkey 481.25
Brazil 466.77

South Africa 404.97
Australia 393.16

UK 340.61
Vietnam 327.91
Italy 322.95
France 315.30

Table 4.4: Top 10 countries of carbon emissions
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4.2. Competition Cluster Hypergraph CLUSTER HYPERGRAPH

Figure 4.3: A semidirected graph

Figure 4.4: Competition cluster hypergraph of figure

From tables 4.3 and 4.4, the corresponding semi-directed is shown in the figure

4.3, and its corresponding competition cluster hypergraph is shown in the figure

4.4

The step-by-step process to find out the competition cluster hyper-

graph is given as follows:

Step 1. First construct a Semidirected Graph from the Six highest COVID-19-

affected countries which are assumed as nodes along with two fictitious nodes

COVID-19 and CO2 emissions. All the assumed countries are affected by COVID-

19 and CO2 emissions. Thus, there will be direct edges from COVID-19 and CO2

emissions to all the nodes, undirected edges connect the countries that are affected

by the same country. (see Table 4.3 and Figure 4.4).
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4.2. Competition Cluster Hypergraph CLUSTER HYPERGRAPH

Step 2. In the resultant competition hypergraphs, cliques will form cluster nodes.

USA-India-France is the cluster node for this case (Figure 4.4). Between two nodes,

there will be edges if the nodes have common out-neighbourhoods in semidirected

graphs. Hence, the nodes COVID-19 and CO2 emissions will have one edge.
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Conclusion

This project explores the topic cluster hypergraph. For the application, I focus on

analyzing five cancers and their top ten mutated genes, and among these genes, I

give more focus on the tumor suppressor genes. Constructed cluster hypergraphs

based on these data. From that representation, TP53 emerges as the critical gene

in the network. Interestingly observed that the gene that has the highest degree

also has the highest effective degree. Similarity arises because each cluster node

contains ten nodes. Here I didn’t consider all mutated genes of the corresponding

cancer if we do so then the network will be on complex. To illustrate the applica-

tion of competition cluster hypergraph considered two cases COVID-19 and CO2

emission. and obtain a competition cluster hypergraph from the semi-directed

graph drawn from the data provided.

32



REFERENCES

[1] Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., Barabási, A.-L.
(2007).The Human Disease Network. ”Proceedings of the National Academy
of Sciences of the United States of America”.

[2] Aittokallio, T., Schwikowski, B. (2006). Graph-based methods for analyzing
networks in cell biology.

[3] Maity, A., Das, K., Samanta, S., Mondal, S., Dubey, V. (2021). A study of
cluster hypergraphs and its properties.

[4] Samanta, S., Muhiuddin, G., Alanazi, A. M., Das, K. (2020).A Mathemat-
ical Approach on Representation of Competitions: Competition Cluster Hy-
pergraphs.

[5] Estrada, E., Rodŕıguez-Velázquez, J. A. (2020).Complex Networks as Hyper-
graphs. Mathematical Problems in Engineering.

[6] Chitra, U. (2017).Random Walks on Hypergraphs with Applications to
Disease-Gene Prioritization.

[7] Busseniers, E. (2014).General Centrality in a Hypergraph.

33


	CERTIFICATE
	DECLARATION
	ACKNOWLEDGEMENTS
	CONTENT
	INTRODUCTION
	PRELIMINARIES
	Semi-directed Graph
	Degree
	Complete Semi-directed Graph
	Complete Incident Semi-directed Graph
	Neighbourhood, Out-neighbourhood, In-neighbourhood
	m-step Neighborhood, m-step Out-neighborhood, m-step In-neighborhood
	m-step Semi-directed Graph


	HYPRGRAPH
	Hypergraph
	Example

	Terminology
	Graph And Hypergraph Association
	Clique Graph Of A Hypergraph
	Maximal Hypergraph Associated To Graph

	Complex Networks As Hypergraph
	Real-life Example of Hypergraph


	CLUSTER HYPERGRAPH
	Cluster Hypergraph
	Degree
	Effective Degree

	Types Of Cluster Hypergraph
	Uniform Cluster Hypergraph
	Cluster Connected Cluster Hypergraph

	Completeness Property Of Cluster Hypergraph
	Complete CCCH
	Complete Uniform Cluster Hypergraph


	COMPETITION CLUSTER HYPERGRAPH
	Competition Cluster Hypergraph
	Definition
	Proposition
	Remark
	Theorem

	m-step Competition Cluster Hypergraph
	Isolated Node
	Isolated Maximal Node
	Isolated Node In A Cluster

	Competition Number
	Algorithm
	Example
	Proposition

	Proposition

	APPLICATION
	Cluster Hypergraph
	Competition Cluster Hypergraph
	CONCLUSION
	REFERENCES


