| Reg. No : |
|-----------|
| Name :    |

# BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, MARCH 2024

## **2023 ADMISSIONS REGULAR**

# SEMESTER II - CORE FOR COMPUTER APPLICATIONS ST2C02B23 - Probability and Random Variables

Time: 3 Hours

#### Part A

### I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

Maximum Marks: 80

- 1. Distinguish between direct and inverse correlation.
- 2. How will you identify whether the correlation is positive or negative?
- 3. What is a Scatter diagram?
- 4. Give the standard error estimates of two regression lines.
- 5. State the properties of regression co-efficients of a bivariate data.
- 6. Establish the relationship between the correlation coefficient and the two regression coefficients of a bivariate data.
- 7. Define conditional probability.
- 8. If A, B, C are three events such that P(A) = P(B) = P(C) = 1/2, P(AB) = P(AC) = 1/3 and P(BC) = 0 Find P(AUBUC).
- 9. Distinguish between discrete and continuous sample spaces with suitable examples.
- 10. The joint p.d.f. of a bivariate random variable (X,Y) is f(x,y) = x+y; 0
- 11. The joint p.d.f. of a bivariate random variable (X,Y) is f(x,y) = x+y; 0 < x < 1, 0 < y < 1, find the marginal p.d.f. of X.
- 12. Given that  $f(x) = e^{-x}$ ;  $x \ge 0$  is the p.d.f. of a random variable X, find the p.d.f. of Y = 7 3X

#### Part B

#### II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Derive the formula of rank correlation coefficient.
- 14. Find the Spearman's rank correlation co-efficient from the following data

| Sales    | 50 | 50 | 55 | 60 | 65 | 65 | 65 | 60 | 60 | 50 |
|----------|----|----|----|----|----|----|----|----|----|----|
| Expenses | 11 | 13 | 14 | 16 | 16 | 15 | 15 | 14 | 13 | 13 |

- 15. Given the two regression lines 8x 10y + 66 = 0 and 40x 18y = 214, identify the equations and find  $\overline{x}$ .  $\overline{y}$
- 16. If two regression equations are 4y = 9X + 15, 25 X = 6Y + 7. Identify the regression equations and obtain the mean values of X and Y.
- 17. Prove that if A and B are such that P (A) ≠ 0, P (B) ≠ 0 and A is independent of B, then B is independent of A.
- 18. Box I contains 2 red and 3 white balls and box II contains 4 red and 7 white balls. Two balls are transferred from box I to box II and then three balls are drawn out from box II. What is the probability of getting 2 red and 1 white balls?
- 19. f(x) = x/15, x = 1,2,3,4,5 and 0 elsewhere is the density function of the random variable X. Find its distribution function. Find P(1 < x < 2) and  $P(1/2 \le x \le 5/2)$
- 20. Define joint probability distribution function and give its properties.



21. Write down the probability distribution of X and Y, where X denotes the sum of the numbers obtained and Y denotes the maximum of the numbers obtained, when two unbiased dice are tossed.

#### Part C

## III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

22. Find Karl Pearson's co-efficient of correlation and Spearman's rank correlation co-efficient from the following data

| x | 90 | 82 | 82 | 82 | 81 | 71 | 63 | 63 | 49 | 38 |
|---|----|----|----|----|----|----|----|----|----|----|
| у | 75 | 72 | 71 | 71 | 71 | 71 | 50 | 40 | 32 | 32 |

23. The following table gives the heights (in inches) of fathers and sons. Estimate the height of the son when the father's height is 64 inches.

| Ht of Father | 65 | 66 | 67 | 68 | 69 | 71 | 73 | 70 | 72 |
|--------------|----|----|----|----|----|----|----|----|----|
| Ht of Son    | 30 | 42 | 45 | 46 | 33 | 34 | 40 | 35 | 39 |

- 24. (a) State and prove Baye's theorem. (b) Two classes A & B consists of 25 boys, 15 girls and 20 boys, 30 girls respectively. One student is selected at random and found to be a girl. Find the probability that she was from class B.
- 25.  $f(x,y)=\frac{x+y}{21}; x=1,2,3$  and y=1,2. Find (i) f(x/y=2) and f(y/x=3)
  - (ii) The p.d.f. of X+Y
  - (iii) Examine whether X and Y are independent.

