TB	7 A	2	A 7	_
10	24	·Z3	4/	•

Reg. No :....

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, MARCH 2024

2023 ADMISSIONS REGULAR

SEMESTER II - CHEMISTRY COMPLEMENTARY COURSE 1

MT2B01B23 - Partial Derivatives, Multiple Integrals Trigonometry and Matrices

Time: 3 Hours

Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

1. Evaluate $\int_0^1 \int_0^x (3-x-y) \ dy dx$

2. Evaluate $\int_0^1 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) \ dz dy dx$

- 3. Find the area of the region bounded by y=x and $y=x^2$ in the first quadrant.
- 4. Prove that $\cosh 3x = 4\cosh^3 x 3\cosh x$.
- 5. Separate into real and imaginary parts of $sinh^{-}(\alpha i\beta)$.
- 6. Show that $\tanh (x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$
- 7. Write the two dimensional Laplace equation
- 8. $\frac{\partial^2 f}{\partial x^2} \inf_{\text{of } f(x,y) = \sin xy}$
- 9. Find f_{xx} of $f(x, y) = xe^y + y + 1$
- 10. Define rank of a matrix.

11. $\begin{bmatrix} 2 & 4 & 3 & 2 \\ 3 & 3 & 1 & 4 \end{bmatrix}$ Find the rank of the matrix $\begin{bmatrix} 2 & 4 & 3 & 2 \\ 3 & 3 & 1 & 4 \end{bmatrix}$

12. $\begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}$ Find the eigen values of the matrix

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Construct six different iterated triple integrals for the volume of the rectangular solid in the first octant bounded by the coordinate planes and the planes x=1,y=2,z=3. Evaluate one of the integrals.
- 14. Find the volume of the region bounded above by the elliptical paraboloid $z=16-x^2-y^2$ and below by the square $R:0\leq x\leq 2, 0\leq y\leq 2$.
- 15. Separate $log(\alpha+i\beta)$ into real and imaginary parts.
- 16. If $sin(\theta + i\phi) = tan(x + iy)$, show that $\frac{tan(\theta)}{tanh(\phi)} = \frac{sin(2x)}{sinh(2y)}.$

17.
$$\frac{\partial z}{\operatorname{Find}} \frac{\partial z}{\partial u}, \ \frac{\partial z}{\partial v} \text{ at } u = 0, v = 0 \text{ if } w = x^2 + \frac{y}{x} \text{ and } x = u - 2v + 1, \ y = 2u + v - 2.$$

18. Evaluate $f_{yxxyz, \text{ if }} f(x, y, z) = 1 - 2xy^2z + x^2y$.

Verify Caley Hamilton theroem for the matrix
$$\begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 1 \\ 0 & 5 & -1 \end{bmatrix}$$

Reduce to the Echelon form and find the rank of the matrix

21.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7 \end{bmatrix}$$

Using Cayley Hamilton Theorem calculate A^3 , if

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

- 22. (a) Find the average value of $f(x,y) = x \cos xy$ over the rectangle $R: 0 \le x \le \pi, \ 0 \le y \le 1.$
 - (b) Evaluate the area bounded by the parabola $x = -y^2$ and the line y = x + 2 and the x axis.
 - (c) Find the volume of the tetrahedron cut from the first octant by a plane 6x + 3y + 2z = 6
- 23. Sum to infinity the series : $1 + a \cos\theta + a^2\cos 2\theta + a^3\cos 3\theta + \dots + where |a| < 1$.
- 24. a) Find all the second order partial derivatives of the function $f(x,y) = x^2y + \cos\,y + y\,\sin\,x$
 - b) Show that $w=\sin(x+ct)$ satisfies the equation $\frac{\partial^2 w}{\partial t^2}=c^2\frac{\partial^2 w}{\partial x^2}$
- 25. Solve by Cramer's rule:

$$2a + b + 5c + d = 5$$

$$a + b - 3c - 4d = -1$$

$$3a + 6b - 2c + d = 8$$

$$2a + 2b + 2c - 3d = 2$$

