TB206280W	Reg. No :

Namo	
Ivaille	

B. Sc. DEGREE (C.B.C.S.) EXAMINATION, MARCH 2023 (2020 Admission Regular, 2019, 2018 Admissions Supplementary) SEMESTER VI - CORE COURSE (STATISICS) (For Computer Applications) ST6B07B18 - OPTIMIZATION TECHNIQUES

Time: 3 Hours Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. What is an Analogue model?
- 2. Mention different phases in an operation research study
- 3. Give an example for mathematical model
- 4. Explain linear programing
- 5. Define surplus variable
- State Assignment Problem.
- 7. Which method is more accurate to find an initial feasible solution for a Transportation Problem?
- 8. Define the dual linear programming
- 9. Who Developed Critical Path Method?
- 10. Explain EVENT in PERT/CPM network
- 11. Write the full form of PERT
- 12. What are the basic assumptions underlying the "expected time "estimate?

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Mention in detail the different phases in an operation research study
- 14. Explain Models and modelling in Operations Research
- 15. Explain the graphical method of solving Linear Programing Problem
- 16. A manufacturer produces 2 different models X and Y, of the same product. Model X makes a contribution of Rs 50 per unit, and model Rs 30 per unit towards total profit. Raw materials r_1 , r_2 are required for production. At least 18 kg of r_1 , and 12kg of r_2 must be used daily. Also atmost 34 hours of labour are to be utilized. A quantity of 2 kg of r_1 , is needed for model X and 1kg of r_1 needed for model Y.
 - For each of X and Y 1kg of *r*2 is required. It takes 3 hrs to manufacture model X and 2 hrs to manufacture Y . How many units of each models should be produced to maximize the profit? Use graphical method to solve the problem.
- 17. Use the Graphical method to solve the following Linear Programing

Maximize $Z=15x_1+10x_2$

Subject to constrains $4x_1+6x_2 \le 360$

 $3x_1 + 0x_2 \le 180$

 $0x_1 + 5x_2 \le 200$

18. Show that transportation problem is a special type of LP

19. Using Least Cost Method solve the following Transportation Problem by using the Least Cost Method

	D1	D2	D3	D4	Supply
S1	1	2	1	4	30
S2	3	3	2	1	50
S3	4	2	5	9	20
Demand	20	40	30	10	

- 20. Why does Vogel's approximation method Provide a good feasible solution?
- 21. What are the major limitations of a PERT model?

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

22. Use Simplex Method to solve the following LPP Maximize $Z=3x_1+5x_2+4x_3$

Subject to constrains
$$2x_1+3x_2 \le 8$$

 $2x_2+5x_3 \le 10$
 $3x_1+2x_2+4x_3 \le 15$
 $x_1, x_2, x_3 \ge 0$

- 23. Give the flow chart of steps in the Hungarian problem
- 24. What is a Transportation Problem. Explain the three methods of obtaining initial feasible solution?
- 25. An assembly is to be made from two parts X and Y. Both parts must be turned on a lathe and Y must be polished whereas X need not be polished. The sequence of activities together with their predecessors is given below.

Activity	Description	Predecessor Activity
А	Open work order	
В	Get material for X	A
С	Get material for Y	A
D	Turn X on lathe	В
E	Turn Y on lathe	B,C
F	polish Y	E
G	Assemble X and Y	D,F
Н	Pack	G