TB206195W Reg. No :.....

Name	

B. Sc. DEGREE (C.B.C.S.) EXAMINATION, MARCH 2023 (2020 Admission Regular, 2019, 2018 Admissions Supplementary) SEMESTER VI - CORE COURSE (CHEMISTRY) CH6B11B18 - PHYSICAL CHEMISTRY - III

Time: 3 Hours Maximum Marks: 60

Part A

I. Answer any Ten questions. Each question carries 1 mark

(10x1=10)

- 1. Identify the laws which a) gives the concept of entropy b) helps us to calculate the absolute value of entropy.
- 2. Record the value of ΔU for an ideal gas undergoing isothermal change.
- Compute the entropy change for the conversion of one mole of ice to water at 273 K and 1 atm pressure.
- 4. Define heat capacity.
- 5. Define equilibrium constant in terms of partial pressure.
- 6. Represent the Henderson's equation for a basic buffer.
- 7. Define Usanovich base.
- 8. Give an example for simple eutectic system in phase studies.
- 9. Determine the number of phases, number of components and variance of the system in equilibrium: $NH_4Cl_{(s)} \Leftrightarrow NH_{3(q)} + HCl_{(q)}$
- 10. Define the term component.
- 11. The reaction A + 3B \rightarrow 2C obeys the rate equation: rate = $k(A)^{1/2}$ (B) 3/2. What is the order of reaction?
- 12. Give an example for parallel reactions.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Discuss the significance of Gibbs Helmholtz equation.
- 14. Enumerate the limitations of first law of thermodynamics which necessitates the second law of thermodynamics.
- 15. Differentiate between a natural and unnatural process.
- 16. Enumerate the applications of Gibbs Helmholtz equation.
- 17. Calculate K_p/K_c for the following reactions at 27°C: a) $N_{2(g)} + O_{2(g)} \Leftrightarrow 2NO_{(g)}$ b) $N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{3(g)}$ c) $NH_4CI_{(s)} \Leftrightarrow NH_{3(g)} + HCI_{(g)}$.
- 18. Discuss the general phase diagram for condensed systems involving the formation of components with congruent melting points.
- 19. Apply phase rule and discuss the phase diagram of the ferric chloride-water system.
- 20. Discuss briefly with example a) Parallel reaction and b) Opposing reaction.
- 21. Illustrate Zero order reaction by deriving the integrated rate equation.

Part C

III. Answer any Two questions. Each question carries 10 marks

(2x10=20)

22. Explain the application of Hess's law in a) Calculation of enthalpy of reaction b) Calculation of enthalpies of formation.

- 23. Describe the entropy changes of an ideal gas in (a) an isothermal process; (b) an isobaric process, and (c) an isochoric process by deriving equations.
- 24. Derive van't Hoff equation showing the temperature dependence of equilibrium constant and extend it to its integrated form.
- 25. Explain the integrated rate equation for second order reactions when there are two reactants and both have the same initial concentration with graphical representation.