TB205405V	Reg. No :

Namo	
Haille	

B. Sc. DEGREE (C.B.C.S.) EXAMINATION, NOVEMBER 2022 2020 ADMISSIONS REGULAR AND 2019, 2018 ADMISSIONS SUPPLEMENTARY SEMESTER V - CORE COURSE (PHYSICS) PH5B06B18 - CLASSICAL AND QUANTUM MECHANICS

Time: 3 Hours Maximum Marks: 60

Part A

I. Answer any Ten questions. Each question carries 1 marks

(10x1=10)

- 1. Differentiate between rheonomous and scleronomous constraints.
- 2. List the advantages of using generalized coordinates.
- 3. State Hamilton's principle.
- 4. Show that the generalized momentum conjugate to a cyclic coordinate is conserved.
- 5. Write down Planck's radiation law and explain the symbols.
- 6. State the difference between photoelectric effect and Compton effect.
- 7. State the relation between de Broglie wavelength and the velocity of the particle.
- 8. Represent a wave packet both graphically and analytically.
- 9. Briefly discuss the normalization condition for a wave function.
- 10. Show that the probability current density is a constant in time, for stationary states.
- 11. Give the operators for energy and momentum in quantum mechanics.
- 12. Write down the expression for transmission coefficient for one-dimensional square barrier.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Discuss the difficulties introduced by constraints in the solution of mechanical problems. Suggest methods to overcome those difficulties.
- 14. Write the Hamiltonian for a simple pendulum and hence deduce its equation of motion.
- 15. A particle slides from rest at one point on a frictionless wire in a vertical plane to another point under the influence of earth's gravitational field. If the particle travels in the shortest time, show that the path travelled by it is a cycloid.
- 16. Calculate the velocity of photoelectrons when a light of wavelength 2000 Å is incident on a metal surface. Work function of the metal is 2.5 eV.
- 17. Find the K.E of the neutron in units of eV whose de Broglie wavelength is 1Å. Mass of neutron is $1.675 \times 10^{-27} \ kg$
- 18. Obtain the relation between particle velocity and the group velocity for a non relativistic particle.
- 19. Find the expectation value of the position of a particle enclosed in a box of length L.
- 20. Show that any two eigenfunctions of a Hermitian operator that belong to different eigenvalues are orthogonal.
- 21. A 1 eV electron is trapped inside the surface of a metal. If the potential barrier is 4.0 eV and the width of the barrier is 2 Å, calculate the probability of its transmission

Part C

III. Answer any Two questions. Each question carries 10 marks

(2x10=20)

- 22. Derive Lagrange's equations using Hamilton's principle.
- 23. Describe Compton Effect and obtain the expression for Compton shift.
- 24. State and prove Ehrenfest's theorems.
- 25. Set up the Schrodinger equation for a particle in a one dimensional box and find the expressions for ground state energy and the corresponding wave function.