ГВ145800 V	Reg No:

TA.T		
Name	 	•••••

B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2022

(2014 Admission Supplementary)

FIFTH SEMESTER - CORE COURSE (MATHEMATICS)

Common to B.Sc. MATHEMATICS and COMPUTER APPLICATIONS

MAT5MA: MATHEMATICAL ANALYSIS

Time: 3 hours PART A Maximum marks: 80

Short answer questions

(Answer all questions. Each question carries 1 mark)

- 1. State Cauchy's first theorem on limits.
- 2. Define Infimum of a set.
- 3. Give an example of a bounded set having no limit point.
- 4. State Bolzano Weierstrass theorem for sets.
- 5. Define an open set.
- 6. Give an example to show that every bounded sequence need not be convergent.
- 7. Find the limit point of the set {2, 4, 6}
- 8. Find $\lim_{n \to \infty} \frac{(3n+1)}{(n+3)}$.
- 9. Show that Im(iz) = Re z.
- 10. Express (1+i) in the exponential form

 $(10 \times 1 = 10)$

PART B

(Answer any 8 questions. Each question carries 2 marks)

- 11. Find the interior of the set of rational numbers.
- 12. Prove that the greatest number of a set if it exists is the supremum of the set.
- 13. Construct $\{a_n\}$ such that $a_n = n + 1 \ \forall n \in \mathbb{N}$.
- 14. Give an example of a bounded set having no limit point and a bounded set having infinite number of limit points.
- 15. Show that a set cannot have more than one supremum.
- 16. Show that the interior of a finite set is the null set.
- 17. Prove that every convergent sequence is bounded.

- 18. If S and T are subsets of real numbers, then show that $S \subseteq T \Rightarrow S' \subseteq T'$.
- 19. Show that the set of rational numbers in [0,1] is countable.
- 20. Show that every monotonic decreasing sequence which is bounded below, converges to the infimum
- 21. Sketch the set |2z + 3| > 4.
- 22. Prove that $|z_1 + z_2|^2 \le |z_1|^2 + |z_2|^2$

 $(8 \times 2 = 16)$

PART C

(Answer any 6 questions. Each question carries 4 marks)

- 23. Show that derived set of a bounded set is bounded.
- 24. State and prove Archimedean property.
- 25. Prove that the interior of a set S is an open subset of S.
- 26. If M and N are neighbourhoods of a point x, then show that $M \cap N$ is also a neighbourhood of x.
- 27. Show that the intersection of an arbitrary family of closed sets is closed.
- 28. Prove that a set is closed if its complement is open.
- 29. Prove that the Cartesian product of two countable sets is countable.
- 30. Show that every bounded sequence with a unique limit point is convergent.
- 31. Use De-Moivre's formula to derive $\sin 3\theta = 3\cos^2\theta\sin\theta \sin^3\theta$.

 $(6 \times 4 = 24)$

PART D

Answer any 2 questions. Each question carries 15 marks.

- 32. State and prove the equivalence of order completeness property and Dedekind's property of *R*.
- 33. State and prove Bolzano Weierstrass's theorem for sets.
- 34. State and Prove Cauchy's Second theorem on limits.
- 35. Prove that a necessary and sufficient condition for the convergence of a monotonic sequence is that it is bounded.

 $(2 \times 15 = 30)$