Reg.	No	•	
·			

B. Sc. DEGREE (C.B.C.S.) EXAMINATION, NOVEMBER 2022 2020 ADMISSIONS REGULAR AND 2019, 2018 ADMISSIONS SUPPLEMENTARY SEMESTER V - CORE COURSE (MATHEMATICS) MT5B08B18 - ABSTRACT ALGEBRA

Time: 3 Hours Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. Give an example of an associative binary operation that is not commutative.
- 2. Examine whether the set of all $n \times n$ diagonal matrices form a group under matrix multiplication.
- 3. Define the orbits of a permutation.
- 4. Define cycle.
- 5. Compute the gcd of 58 and 68.
- 6. Evaluate all the orbits of the permutation $\begin{pmatrix}1&2&3&4&5&6\\5&1&3&6&2&4\end{pmatrix}$
- 7. Define the kernel of a homomorphism.
- 8. Define inner automorphism of a group G.
- 9. Find $\phi(18)_{ ext{of the group homomorphism}} \ \phi: \mathbb{Z} \mapsto \mathbb{Z}_{10 \ ext{such that}} \ \phi(1) = 6$
- 10. Calculate the kernel of the homomorphism $\phi: \mathbb{Z} \mapsto \mathbb{Z}_7$ such that $\phi(1) = 4$
- 11. Define a field. Give an example.
- 12. Solve the equation 3x = 2 in the field \mathbb{Z}_7 .

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Establish the uniqueness of identity element in a group.
- 14. Show that if $(a*b)^2 = a^2 * b^2$ for a and b in a group G, then a*b = b*a.
- 15. Show that every group of prime order is cyclic.
- 16. Let A be a nonempty set and let S_A be the collection of all permutations of A. Deduce that S_A is a group under permutation multiplication.
- 17. Let H be a subgroup of a group G. Let the relation be \tilde{L} be defined on G by $\tilde{aL}b$ if and only if $a^{-1}b\in H$. Show that \tilde{L} is an equivalence relation on G.
- 18. Let ϕ be a homomorphism of a group G into a group G'. If K' is a subgroup of $G' \cap \phi[G]$, then prove that $\phi^{-1}[K']$ is a subgroup of G.
- 19. Compute all the cosets of the subgroup <4> of \mathbb{Z}_{12}
- 20. Deduce that the cancellation laws hold in a ring R if and only if R has no zero divisors.
- 21. Show that if a and b are nilpotent elements of a commutative ring, then a+b is also nilpotent.

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

- 22. Determine whether the given set of matrices is a group.
 - a) All $n \times n$ upper triangular matrices under matrix addition

- b) All $n \times n$ upper triangular matrices under matrix multiplication
- c) All $n \times n$ upper triangular matrices with determinant 1 under matrix multiplication
- 23. Establish that the subgroups of $\mathbb Z$ under addition are precisely the groups $n\mathbb Z$ under addition for $n\in\mathbb Z$
- 24. Let G be a cyclic group with generator a. Establish that
 - a) If the order of G is infinite, then G is isomorphic to $(\mathbb{Z},+)$.
 - b) If G has finite order n, then G is isomorphic to $(\mathbb{Z}_n, +_n)$.
- 25. a) State Lagrange's theorem and construct the proof of Lagrange's theorem b) Establish that every group of prime order is cyclic. c) Prove that the order of an element of a finite group divides the order of the group.