TB205125V Reg. No :.....

Name	

B. Sc. DEGREE (C.B.C.S.) EXAMINATION, NOVEMBER 2022 2020 ADMISSIONS REGULAR AND 2019, 2018 ADMISSIONS SUPPLEMENTARY SEMESTER V - CORE COURSE (CHEMISTRY) CH5B07B18 - PHYSICAL CHEMISTRY - I

Time: 3 Hours Maximum Marks: 60

Part A

I. Answer any Ten questions. Each question carries 1 mark

(10x1=10)

- 1. Calculate the temperature at which hydrogen molecule will have an average speed of 1.7825 x 10⁻³ m/s.
- 2. Relate Boyle temperature to van der Waal's constant.
- 3. Calculate the temperature at which RMS velocity of oxygen gas be equal to that of hydrogen gas at 27°C.
- 4. Define critical temperature of a gas.
- 5. The radius ratio of an ionic solid is 0.223. Select the possible structure of the crystal? A) Cubic B) Octahedral C) Orthorhombic D) Trigonal planar
- 6. Recall the number of Bravais lattices possible in crystal systems.
- 7. State true or false. For an Orthorhombic crystal, $a\neq b\neq c$, $\alpha=\beta=\gamma=90^{\circ}$.
- 8. Choose the alternate term for an amorphous solid. A) isotopic and supercooled liquids B) isoenthalpic and supercooled liquids C) anisotopic and supercooled liquids D) anisotopic and superheated solids.
- 9. State true or false: An amorphous solid can be converted to crystalline solid.
- 10. Recall the principle of stalagmometer.
- 11. Recall laminar flow of liquids.
- 12. Alum is used in town water supply. Explain.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Discuss the applicability of van der Waal's equation in explaining the real gas behaviour under different conditions.
- 14. Define Boyle's temperature. Calculate the Boyle temperature for carbon dioxide gas, assuming it to be a van der Waal's gas. a= 3.59 dm⁶ atm mol⁻² and b= 0.0427 dm³mol⁻¹.
- 15. Explain the terms unit cell, lattice points, crystal structure and motfis and analyse the relation between them.
- 16. Define voids in a crystal. Distinguish between tetrahedral and octahedral voids.
- 17. Explain the term radius ratio with regard to crystal structure. Explain its significance.
- 18. Define miller indices and weiss indices. Calculate the miller indices of (2a, 2b, c).
- 19. Explain a) Stability of colloids. b)Hardy-Schulz rule.
- 20. Explain the principle of stalagmometer. Discuss the surface tension measurement using drop number method.
- 21. Differentiate surface tension and viscosity of a liquid. Discuss the measurement of these parameters experimentally.

Part C

III. Answer any Two questions. Each question carries 10 marks

(2x10=20)

22. A) The collision diameter of Oxygen gas is 3.61×10^{-10} m. if the temperature is 298 K, calculate (i) mean free path at 1 atmp (ii) mean free path at 10^{-3} mm of Hg (iii) collision number at 1 atmp (iv) collision frequency at 1 atmp. [1]

atmp = $101325 \times N/m^2$]

- B) Distinguish n-type and p-type semiconductors.
- 23. A)Derive Pc Vc = 3 RTc/8 B) Explain the term Bravais lattices mentioning the different types found among crystals.
- 24. A) Analyze the structure of NaCl using its powder diffraction pattern. B) Calculate the wavelength of X rays which give a diffraction angle 20=16.8° for a first order diffraction for a crystal with interplanar distance 0.200 nm.
- 25. A) Define and explain an adsorption isotherm. Review the relation between Langmuir isotherm and Freundlich isotherm. B) Explain the terms collision number, collision frequency, and mean free path of a gas. Discuss the effect of pressure and temperature on mean free path.