TB213450V	Reg. No :
	Name :

B. Sc. DEGREE (C.B.C.S) EXAMINATION, NOVEMBER 2022

(2021 Admissions Regular,2020 Admissions Supplementary/Improvement,2019 & 2018 Admissions Supplementary)
SEMESTER III - CORE COURSE (PHYSICS)

PH3B03B18 - SEMICONDUCTOR PHYSICS

Time: 3 Hours Maximum Marks: 60

Part A

I. Answer any Ten questions. Each question carries 1 marks

(10x1=10)

- 1. Draw the equivalent circuit of a forward biased real silicon diode.
- 2. Draw the circuit of a biased negative clamper.
- 3. Draw the output of a positive clipper if an input sine wave of Vpp 10 V is applied to it.
- 4. Explain why zener diodes have narrow depletion region.
- 5. Describe the working of transistor as a switch.
- 6. Using a relevant equation, demonstrate how to plot dc load line.
- 7. Draw the output characteristics of common base configuration and explain.
- 8. Briefly outline how to express amplifier gain in decibel system.
- 9. Give an equation for frequency of oscillations of an LC tank circuit.
- 10. Distinguish between modulation index and percentage of modulation in FM.
- 11. Draw the circuit diagram and explain the working of a buffer operational amplifier.
- 12. Compare the properties of FET and BJT.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. A half-wave rectifier is used to supply 50V d.c. to a resistive load of 800 Ω . The diode has a resistance of 25 Ω . Calculate a.c. voltage required.
- 14. Consider the circuit given in the figure. Specify the diodes which are forward biased during the positive and negative half cycles of the input. All the diodes are identical with a forward resistance of 10 Ω . The peak to peak voltage at the two ends of the secondary terminals is given by 50 sin (50 π)t. Calculate the peak current through the load resistance of 2 k Ω , the average current, and rms value of current. Also calculate the ripple factor and efficiency.

- 15. A transistor is connected in the CE configuration to a supply of 9V. The voltage drop across Rc of 1 K Ω is 1.5V. If α = 0.98, calculate the collector emitter voltage (Vce) and base current.
- 16. A transistor in CEC has a supply voltage 9V. Collector resistance is 1 kilo ohm and the drop across it is 1.5 V. If current amplification factor of the same transistor in CBC is 0.98, calculate collector-emitter voltage and base current.
- 17. Describe how an LC tank circuit generates oscillations. Obtain an equation for oscillation frequency.
- 18. An amplifier has a voltage gain 500 and band width 250 KHz. With negative feedback its gain is reduced to 100. Calculate (i) feedback ratio (ii) feedback fraction and (iii) band width with feedback.
- 19. Explain the working of diode demodulator.
- 20. An inverting opamp with R₁=1K $\boldsymbol{\Omega}$ and R2=100K $\boldsymbol{\Omega}$ has the following parameters A_{OL}=50,000, Z_{in}=4M $\boldsymbol{\Omega}$ and Z_{out}=50 $\boldsymbol{\Omega}$. Find the value of input and output impedance. Also, find the closed-loop gain.
- 21. Describe the construction of N channel junction FET.

Part C

III. Answer any Two questions. Each question carries 10 marks

(2x10=20)

- 22. It is desired to construct biased clampers using silicon diodes to serve as inputs to a switching circuit whose upper and lower thresholds are +5V and -4V respectively. If the trigger signal is triangular with Vpp 10V, design suitable clampers. Explain its working and plot the output waveforms.
- 23. Using relevant circuits and graphs, explain the dc characteristics of transistors in CBC and CCC.
- 24. Explain the salient differences between an amplifier and an oscillator. With the help of a circuit diagram, describe the working of a Colpitt's oscillator.
- 25. With proper explanation and schematic representation, describe amplitude modulation. Also derive the power of AM wave and discuss the case when modulation index is one.