$\qquad$
Name : $\qquad$

## B. Sc. DEGREE (C.B.C.S) EXAMINATION, NOVEMBER 2022

(2021 Admissions Regular,2020 Admissions Supplementary/Improvement, 2019 \& 2018 Admissions Supplementary)
SEMESTER III - CORE COURSE(STATISTICS)
ST3B03B18-PROBABILITY DISTRIBUTIONS
(For Comp Applications)

## Time: 3 Hours

## Part A

Maximum Marks : 80
I. Answer any Ten questions. Each question carries $\mathbf{2}$ marks
$(10 \times 2=20)$

1. If the moment generating function of a random variable $X$ is $(1-t)^{-1}$, find $E(X)$.
2. Define expectation of a function of a random variable.
3. Define mathematical expectation.
4. Write any two properties of Moment generating function of a random variable.
5. If $X \sim P(\lambda)$, find $E(X)$.
6. If $X$ and $Y$ are independent Poisson variates with means 2 and 3 respectively find the mean and variance of $2 X+3 Y$.
7. Compute the mode of $B(7,1 / 4)$.
8. Define Beta distribution of the second type.
9. State any four properties of Normal distribution.
10. If $X$ follows Uniform distribution over $[0,1]$, then state the distribution $Y=-2 \log X$.
11. If $X$ is a random variable with $E(X)=3$ and $V(X)=2$, find $h$ so that $P[|X-3|<h] \geq 0.99$
12. A symmetric die is thrown 600 times. Find a lower bound for the probability of getting 80 to 120 sixes.

## Part B

II. Answer any Six questions. Each question carries 5 marks
( $6 \times 5=30$ )
13. State and prove Cauchy-Schwartz inequality.
14. If the joint pdf of a random variable $(X, Y)$ is $f(x, y)=x+y ; 0<x<1,0<y<1$. Find covariance between $X$ and Y.
15. The joint p.d.f. of $(X, Y)$ is $f(x, y)=\frac{x+y}{21} ; x=1,2,3, y=1$,2.Find $E(X \mid Y=2)$
16. Let $X$ and $Y$ be independent random variables such that $P(X=r)=P(Y=r)=q^{r} p, r=0,1,2$,.
.... where p and $q$ are positive numbers such that $p+q=1$. Find (1) the distribution of $X+Y \quad$ (2) the conditional distribution of $X$ given $X+Y=3$.
17. If $X$ and $Y$ follow geometric distributions with parameter ' $p$ ', find (i) the distribution of $Z=X+Y$ (ii) $P(X=Y)$.
18. If $X$ is a random variable distributed as $N(0,1)$ then show that $X^{2}$ has gamma distribution with parameters $m=1 / 2$ and $p=1 / 2$
19. Obtain the points of inflexion of the normal curve with mean $\mu$ and Standard deviation $\sigma$.
20. State and prove Tchebychev's inequality.
21. State central limit theorem for identically distributed random variables. Deduce the normal approximation of the binomial by using central limit theorem.

## Part C

22. (a)Define conditional expectation and conditional variance.(b) If $f(x, y)=x+y ; 0<x<1,0<y<1$ is the joint p.d.f. of $(X, Y)$, calculate correlation between $X$ and $Y$.
23. (1) For the Poisson distribution with mean $m$ show that $\beta_{1}=\frac{1}{m}$ and $\beta_{2}=3+\frac{1}{m}$.
(2) Fit a Poisson distribution to the following data and calculate the theoretical frequencies.

| x | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| f | 122 | 60 | 15 | 2 | 1 |

24. Fit a Normal distribution to the following data and find the expected frequencies

| Class intervals | $21-24$ | $25-28$ | $29-32$ | $33-36$ | $37-40$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Frequencies | 4 | 8 | 12 | 10 | 6 |

25. A random sample of size 100 is taken from an infinite population with mean 75 and variance 256
(a) Using Tchebychev's inequality, find $\mathrm{P}[67<\bar{X}<83]$
(b) Using Central limit theorem, find $\mathrm{P}[67<\bar{X}<83]$
