TB221380V	Reg. No :

Namo	
Hallie	

B. Sc. DEGREE (C.B.C.S.) EXAMINATION, NOVEMBER 2022

(2022 Admissions (regular) 2021 Admissions (Improvement / Supplementary), 2020, 2019, 2018, Admissions Supplementary)

SEMESTER I - COMPLEMENTARY COURSE 2 (PHYSICS) (For CHEMISTRY)

PH1C02B18 - PROPERTIES OF MATTER & THERMODYNAMICS

Time: 3 Hours Maximum Marks: 60

Part A

I. Answer any Ten questions. Each question carries 1 mark

(10x1=10)

- 1. Define Young's modulus.
- 2. Differentiate between elastic and plastic bodies.
- 3. Give the reason why steel girders and rails are made in the form of I –section.
- 4. Distinguish between uniform bending and non-uniform bending.
- 5. Give the reason why greased cotton soak less than ordinary cotton.
- 6. Argue that Reynold's number can be used to get an idea about the streamlined flow of a liquid.
- 7. Distinguish between stream line flow and turbulent flow.
- 8. Explain the term adiabatic process. Give an example.
- 9. List out the parameters on which internal energy of a perfect gas depend.
- 10. Explain a method by which we can alter the temperature of source and sink to improve the efficiency of a heat engine.
- 11. Is entropy a state function or a path function? Justify.
- 12. Give Kelvin-Planck statement of second law of thermodynamics.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. A bar of width 2.5 cm and thickness 2.5 mm is supported symmetrically on two knife edges 1 m apart. When loaded with weight 100 g at each end which is projected 10 cm from the respective knife edges, the centre is elevated by 2 mm. Determine the Young's modulus of the material.
- 14. Two cylinders of the same length, mass and density but one solid of radius r and the other hollow of inner and outer radii r₁ and r₂ respectively. Determine which one requires more couple to twist through same angle.
- 15. A steel wire of length 2 m and diameter 0.5 mm stretches by 2 mm under the action of a load of 2 kg. Compute the Young's modulus of the material.
- 16. Write a short essay on factors affecting surface tension.
- ^{17.} A river is flowing at a speed of 9km/h. If the river is 5m deep find the shearing stress between the horizontal layers of water. Given coefficient of viscosity is 0.001 Ns/m².
- 18. Two capillary tubes of radii r_1 and r_2 and lengths l_1 and l_2 are connected in series. Show that the rate of flow of liquid

through the combination is
$$\frac{\pi P}{8\eta} \left\{ \frac{l_1}{r_1^4} + \frac{l_2}{r_2^4} \right\}^{-1}$$

- 19. In a refrigerator one removes heat from a lower temperature and deposits to the surroundings at a higher temperature. In this process, mechanical work has to be done, which is provided by an electric motor. If the motor is of 1kW power, and heat is transferred from -3°C to 27°C, find the heat taken out of the refrigerator per second assuming its efficiency is 50% of a perfect engine.
- 20. Efficiency of Carnot's engine increased from 1/3 to 1/2 when source temperature is raised by 100K. Calculate the temperature of the sink.
- 21. Explain the term entropy. Obtain an equation for change in entropy.

Part C

III. Answer any Two questions. Each question carries 10 marks

(2x10=20)

- 22. Derive the expression for couple per unit twist of a uniform cylinder.
- 23. Derive an expression for the depression at the loaded end of a cantilever.
- 24. Explain surface tension and surface energy. How are they related? Obtain an expression for the excess pressure inside a soap bubble.
- 25. Describe Carnot's cycle. Derive the expression for the efficiency of an ideal heat engine in terms of temperature.