TM211890TR

Reg. No	·
Name :	

M. Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2021

[2021 Admissions Regular and 2020 Admissions Improvement & Supplementary]
SEMESTER I - CORE COURSE (APPLIED STATISTICS AND DATA ANALYTICS)
ST1C01TM - PROBABILITY AND MEASURE THEORY

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Define Lebesgue measure. State the conditions under which a function is said to be Lebesgue measurable.
- 2. Prove that outer measure of a singleton set is zero.
- 3. If f and g are two measurable functions then show that f+g is measurable.
- 4. Let X be a random variable defined on the probability space (Ω, \mathcal{A}, P) and a and b are constants then show that (aX + b) is a random variable.
- 5. State continuity property of probability measure
- 6. State Tchebychev's inequality
- 7. State Markov's inequality
- 8. State Minkowski's inequality
- 9. Distinguish between Lindberg-Levy CLT and Lindberg-Feller CLT
- 10. state Liaponov's Central limit theorem

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Define sigma field. Give an example of a field but not sigma field.
- 12. If E_1 and E_2 are measurable sets, show that $E_1 \bigcup E_2$ is also measurable.
- 13. State Jordan decomposition theorem.
- 14. Show that $V(x) < E(x-c)^2$ for any $c \neq E(x)$
- 15. Define convergence is probability and convergence in distribution regarding a sequence of random variables $\{Xn, n \ge 1\}$ to a random variable X. Show that the former implies the latter
- 16. let h(x) be a NOn-negative Borel measurable function of a random variable X and let E(h(x)) exists. then show that $p\{h(x) \ge \varepsilon\} \le \frac{E[h(x)]}{\varepsilon}$ for every $\varepsilon > 0$
- 17. State and prove Lindberg-Levy central limit theorem
- 18. Let $\{X_n\}$ be a sequence of independent random variable with the following distribution .check whether does the Lindberg Condition hold? $\{X_n = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19.
- 1. If $\{f_n\}$ is a sequence of measurable functions which is fundamental in measure. Show that there exists a measurable f such that $f_n \to f$ in measure
- 2. Let $f_n \to f$ in measure where f and each f_n are measurable functions. Show that there exists a subsequence $\{n_i\}$ such that $f_{n_i} \to f$ a.e.

20. State and prove

- 1. Bayes theorem
- 2. multiplication theorem

21. If
$$Xn \xrightarrow{p} X$$
 and $Yn \xrightarrow{p} Y$ then ST

(a) $Xn+Yn \xrightarrow{p} X+Y$

(b) $XnYn \xrightarrow{p} XY$

22. State and prove Kolmogorov's inequality