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Chapter 1

INTRODUCTION

The technique of characterizing a system using mathematical concepts

is known as mathematical modelling. It entails transforming real-world

problems into mathematical problems, thereafter solving those mathe-

matical problems by implementing various mathematical concepts and

interpreting the solutions in a language understandable in the real

world.

It may not be possible to solve a real-world problem when it is trans-

formed into a mathematical problem in all its generalities. As a result,

the problem is idealized or approximated into a different problem that

is fairly similar to the original problem, which is then translated into

a mathematical problem and solved. During this idealization process,

the problem under investigation is examined, and the key or essential

aspects of the issue are preserved while the non essential aspects are

dropped.
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The unpredictable nature of infectious diseases is a concern that can

jeopardize the ability of health systems and services to satisfy the de-

mands of the population, where mathematical modelling of infectious

diseases can aid health services in disease transmission and advise the

public in health decision-making. Here, mathematical modelling of in-

fectious disease dynamics acts as an important tool for comprehending

disease dynamics, assessing appropriate control measures, forecasting

future outbreaks, aiding health services in disease transmission and ad-

vising the public in health decision-making.

The mathematical model can forecast the course of infectious diseases,

the likely result of an epidemic, and help guide public interventions as a

result. To determine parameters for various infectious diseases that are

used to calculate the effects of various actions, such as mass vaccination

programmes, models use statistics that have been gathered and applied

in combination with mathematics. The poor knowledge acquired from

huge populations under challenging existing conditions can be made up

for in particular with the aid of mathematical modelling.

We cannot just move from an assumption to an equation when the sys-

tem being described is more complex. We must be significantly more

meticulous when stating assumptions as well as defining the system.

Flow diagrams are a visual tool for this purpose.
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Mathematical models of infectious diseases can be classified as deter-

ministic models and stochastic models. The deterministic model of

infectious diseases is an approximation of how an epidemic will behave

in a closed system, in which the population is divided into compart-

ments that define disease states, and differential equations appearing

as derivatives describe the migrations between these states by determin-

ing fluctuations over time. Although deterministic models describe the

behaviour of infectious diseases, they do not account for environmental

influences or protective behaviours in the susceptible host population.

There are numerous applications for mathematical modelling. In this

project, would go over the key elements of mathematical modelling of

infectious disease immunization in a closed population. Our aim is to

persuade epidemiologists and other public health professionals of the

value that mathematical modelling could provide in the field of health-

care.
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Chapter 2

PRELIMINARIES

2.1 INFECTION

An infection takes place when germs enter a person’s body and pro-

liferate, resulting in sickness, organ and tissue damage. The infection

causing microorganisms are called pathogens. The major examples of

pathogens are bacteria, fungi and viruses. These pathogens vary in sev-

eral different ways such as shape, function, genetic content, size and to

what extreme they can affect a person, an animal or a plant. A person,

animal or plant who harbours the pathogenic microorganism without

suffering from any disease from them.

These harmful microorganisms enter a human body by physical con-

tact, consuming contaminated food or water or touching the objects

used by a person carrying the pathogen. These are the normal ways of

transmission of the infection from one person to another. When they

are inside the host, they normally take a short or long period of time

to reproduce and hence be able to be transmitted to other organisms.

The innate immune responses provide the defence in advance against

the invading pathogens. The ability of a person’s immune responses to

conquer the infection shows how strong the person’s immunity is. The

time period of an infection is the time interval in which an infection en-

ters a host through a pathogen, reproduces and transmits the infection

to the next person.
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2.2. TRANSMISSION

This time period is divided into three subsequent segments such as

the pre-infectious period, the incubation period and the last one which

is the infectious period. The pre-infectious period also known as the

latent period is the beginning of the infectious period. It is the time

interval during which the pathogens enter the body, replicate at various

parts of the body and become ready to be transmitted. The incubation

period is the time interval between the infection and its capability to

arise as a disease. The infectious period marks the end of the previous

period, therefore the host is not capable of transmitting the infection

to others. In our study of the infectious disease which has been prevail-

ing in our planet for a large amount of time, Covid-19 is an infectious

disease caused by SARS-CoV-2 virus.

2.2 TRANSMISSION

Microorganisms like bacteria, viruses, fungus, and protozoa, collectively

known as germs, are the source of disease. Some germs are helpful which

helps us to stay healthy, while others are harmful and cause infection.

Infectious diseases spread through direct and indirect transmission of

these germs among individuals. Germs can enter the body through the

mouth by eating, drinking, or breathing, through the skin by cuts and

grazes, eyes, and genitalia.

There are two modes of transmission. Direct transmission is the person

to person spread which is the most common way of transmission of an

infectious disease. Germs can spread from person to person through air

(as droplets), faecal-oral spread, blood (or other body fluids), skin and

sexual contact. In an indirect transmission, the transmission of germs

occurs from an infected person to an object and then to another person

who comes into contact with this object.

This project is a case study of Kerala on mathematical modelling of

COVID - 19. The aim of this project is to substantiate whether an epi-

demic occurred or not between February 2020 and August 2022 for the
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2.3. DIFFERENTIAL EQUATION

given demographic. Mathematical modelling can be used to generate

conclusions from problems in many disciplines of science and economics

when the models are specified by difference or differential equations.

We can use difference equations to solve discrete models and differen-

tial equations to solve continuous models.

2.3 DIFFERENTIAL EQUATION

A differential equation is one that involves derivatives of one or more

dependent variables with respect to one or more independent vari-

ables. There are some classifications for differential equations accord-

ing to whether there is one or more than one independent variable

involved. The various rates of change, expressed by various derivatives

and the scientific laws themselves become mathematical equations in-

volving derivatives, that is, differential equations. For example, the rate

of change in the number of individuals in a given region over time is

given by the difference between the number of individuals entering the

region and the number of individuals leaving the region per unit time.

dS(t)
dt

denotes the rate of change in the number of susceptible individuals

at time t.

dE(t)
dt

denotes the rate of change in the number of pre-infectious individ-

uals at time t.

dI(t)
dt

denotes the rate of change in the number of infectious individuals

at time t.

dR(t)
dt

denotes the rate of change in the number of recovered individuals

at time t.

λ(t) denotes the rate at which susceptible individuals becoming infected

per unit time, at time t.

f denotes the rate at which individuals in the pre - infectious category

becoming infectious per unit time, at time t.

γ denotes the rate at which infectious individuals recover (become im-

mune) per unit time, at time t.
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Chapter 3

MATHEMATICAL MODEL

AND SETTING UP OF

MODELS

3.1 MATHEMATICAL MODEL

A mathematical model provides a suitable framework in which we can

incorporate all of the aforementioned data to estimate changes in the

number of susceptible, infectious, and immune individuals, along with

the expected number of cases in a population. Consider a simple infec-

tious disease event in which an infection is introduced into a group of

individuals. After being in contact with the infection, these individuals

will become infectious and subsequently recover.

Let St denotes the number of susceptible individuals and It denotes

the number of infectious individuals at a given time t. The risk of in-

fection among the susceptible at any given time is simply a function of

the number of infectious individuals present during that time. Assume

that the individuals are infectious only for one time period. Then we

can express this statement as It+1 = kSt+1 , where ‘k’ is a proportionality

coefficient, called a ‘contact rate’. The equation It+1 = kSt+1 is called

the mass action principle in epidemiology.

7



3.2. HOW TO SET UP MODELS?

Contact rate is the proportion of all possible contacts between sus-

ceptible and infectious individuals that will lead to the susceptible in-

dividuals to be infectious. We can predict the number of susceptible

individuals remaining in the next time period as St+1 = St - It+1 .

3.2 HOW TO SET UP MODELS?

The following are the steps involved in the development and application

of a detailed model:

1. Identify the question.

2. Determine the pertinent facts about the infection in the question.

3. Selecting the modelling method.

4. Specify model input parameters.

5. Set up the model

6. Model Validation

7. Prediction and optimization

3.3 THE NATURAL HISTORY OF THE INFECTION

The model structure should showcase the natural history of the infec-

tion. As a result, critical sickness categories and transitions, as well

as critical population categories, must be described. For the purpose

of simplicity, the models presented here do not account for population

births and deaths.
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3.4. CHOOSE THE TYPE OF MODELLING METHOD

3.4 CHOOSE THE TYPE OF MODELLING METHOD

Deterministic models describe what happens ’on average’ in a pop-

ulation. Because the input parameters in these models are fixed, the

model’s predictions, such as the number of cases encountered over time,

are predetermined. In contrast, stochastic models allow for random

fluctuations in the number of persons who travel between compart-

ments, such as the rate at which infectious people recover from disease.

As a result, the model can forecast a wide range of outcomes, such as

the number of cases over time or the likelihood of a specific event (such

as an epidemic).

3.5 SETTING UP DETERMINISTIC MODEL

Deterministic model is a mathematical model in which we could always

receive the same output for a given input. It is a model in which no

randomness is involved. Output of this model always depends upon

the initial conditions. Majority of the deterministic model comprises

compartmental models where the model population is divided into sub-

groups such as susceptible, infectious, immune and recovered. This

model is set up using the difference equation and differential equation.

The variables of the system are given by the group of susceptible in-

dividuals (denoted by S), the group of infected individuals (denoted

by I), the group of removed individuals (denoted by R). The model

gives us a precise description regarding the various movements in these

compartments. These include birth, death and recovery.

9



Chapter 4

SETTING UP THE MODEL

USING DIFFERENTIAL

EQUATIONS

In this chapter, we will discuss the formation of differential equations

for the susceptible, pre-infectious, infectious, and recovered categories

for the given model as illustrated in the figure. Furthermore, the basic

reproduction number, growth rate in an epidemic and the average force

of infection will be covered in detail.

4.1 DIFFERENTIAL EQUATION FOR THE RATE OF

CHANGE IN THE NUMBER OF SUSCEPTIBLE

INDIVIDUALS

When considering susceptible individuals in the model exhibiting the

transmission of an immunizing infection, we see that as no one enters

the susceptible class and newly infected individuals exit this category,

the rate of change in the number of susceptible individuals is given by

the expression:

dS(t)
dt

= - (the number of individuals who are newly infected per unit

10



4.2. DIFFERENTIAL EQUATION FOR THE RATE OF CHANGE IN THE NUMBER OF
PRE-INFECTIOUS INDIVIDUALS

time)

dS(t)
dt

= −λ(t)S(t)

λ(t): Force of infection.

S(t): Number of susceptible individuals at time t.

If we assume that individuals randomly encounter one another, then

by analogy with the above equation, λ(t) can be substituted by the

equation λ(t) = β I(t) .

4.2 DIFFERENTIAL EQUATION FOR THE RATE OF

CHANGE IN THE NUMBEROF PRE-INFECTIOUS

INDIVIDUALS

By considering the pre-infectious category of the model, we can see

that when a newly infected individual enters the category the infec-

tious individual will exist the same. The rate of change in the number

of pre-infectious individuals is given by the expression:

dE(t)
dt

= (number of susceptible individuals who are newly infected per

unit time) – (number of pre-infectious individuals who become infec-

tious per unit time)

dE(t)
dt

= λ(t) S(t) - f E(t)

λ(t) S(t): The number of susceptible individuals who are newly infected

per unit time.

fE(t): The number of pre-infectious individuals who become infectious

per unit time.

f : The rate at which individuals become infectious.

11



4.3. DIFFERENTIAL EQUATION FOR THE RATE OF CHANGE IN THE NUMBER OF
INFECTIOUS AND IMMUNE INDIVIDUALS

4.3 DIFFERENTIAL EQUATION FOR THE RATE OF

CHANGE IN THE NUMBEROF INFECTIOUS AND

IMMUNE INDIVIDUALS

The rate of change in the number of infected and immune individuals

can be expressed as follows:

dI(t)
dt

= fE(t) - γI(t)

dR(t)
dt

= γI(t)

I(t): The number of infected individuals.

E(t): The number of pre – infectious individuals.

γ: The rate at which infected individuals recover and become immune.

4.4 METHODS FOR CHECKINGDIFFERENTIAL EQUA-

TIONS

4.4.1 DRAWING MODEL DIAGRAMS

A model diagram is created based on the provided differential equa-

tions. We may be able to understand that the differential equations

are correctly formulated by producing this model diagram. To use this

method, we must first comprehend it thoroughly.

The number of equations in the model must be equal to the number of

compartments in the model diagram. If a minus or plus sign is intro-

duced in front of a term in an equation, then the quantity reflected by

that term either exits or enters that compartment.

4.4.2 CHECK FOR POPULATION SIZE

Summing up the differential equations in the model describing the

transmission of an immunizing infectious disease in a closed population

provides a helpful check. It is useful to determine whether the demo-

graphic assumptions have been correctly incorporated into the model.

12



4.5. THE BASIC REPRODUCTION NUMBER

For example, when we combine the equations for one model of infectious

disease spread in a population, we obtain the following conclusions:

dS(t)
dt

+ dE(t)
dt

+ dI(t)
dt

+ dR(t)
dt

= [-λ(t)S(t)] + [λ(t)S(t) - fE(t)] + [fE(t) -

γI(t)] + [γI(t)]

dS(t)
dt

+ dE(t)
dt

+ dI(t)
dt

+ dR(t)
dt

= 0

dS(t)
dt

+ dE(t)
dt

+ dI(t)
dt

+ dR(t)
dt

represents the rate of change of total pop-

ulation size. The fact that the equation equals zero suggests that the

population in the model remains constant over time. This is consistent

with our assumption of a closed population.

4.4.3 CHECK THE NUMBER AND DIRECTIONS OF THE AR-

ROW

If the differential equation for a given compartment is correctly for-

mulated, the number of arrows in or out of the compartment in the

modem diagram must be equal to the number of terms in the differen-

tial equation for that compartment. Additionally, the direction of the

arrow determines whether there should be a plus or minus sign in front

of the term that corresponds to it. If an arrow exits the compartment,

the term for that arrow is preceded by a minus sign; if the arrow enters

the compartment, the term is preceded by a plus sign.

4.5 THE BASIC REPRODUCTION NUMBER

The basic reproduction number, Ro, is defined as the average num-

ber of infectious persons that result from the introduction of a typical

infectious person into a completely susceptible population. When an

infection is introduced into a completely susceptible population, the

condition Ro > 1 is believed to be an important ’threshold’ requirement

that must be achieved for the number of infectious persons to increase.

The expression for Ro is given by:

13



4.5. THE BASIC REPRODUCTION NUMBER

Ro = βND

where,

β: Rate at which two specific individuals come into effective contact

per unit time.

D: Duration of infectiousness.

N : Size of the population.

Assuming that the rate at which individuals recover from being infec-

tious (γ) and the average duration of infectiousness are related through

the equation D = 1
γ
, we can rewrite the above equation as:

Ro=
βN
γ

βN : Number of individuals effectively contacted by a given infectious

person per unit time.

βND: Number of individuals effectively contacted by a given infectious

person during the entire infectious period.

For the purpose of simplicity, we will look at the equations of the

Susceptible-Infectious-Recovered (SIR) model. The consequences of

population births and deaths are not taken into account. S(t), I(t) and

R(t) are the number of the individuals who move from one compartment

to the other per unit time. The number of infectious individuals will

increase at any given time if the number of individuals infectious per

unit time βS(t)I(t) exceeds the number of infectious individuals who stop

being infected per unit time (γI(t)) can be expressed as βS(t)I(t) > γI(t).

If an infectious individual is placed into a completely susceptible popu-

lation, the number of individuals who are initially susceptible to infec-

tion equals the population size. Substituting S(t) = N into the previous

expression indicates that the following conditions must be satisfied for

the number of infected people to increase after one infectious person

enters the population:

βNI(t) > γI(t)

14



4.6. PREDICTIONS FOR EARLY STAGES IN AN EPIDEMIC

By cancelling the number of infectious persons at time t (I(t)), we

get βN > γ.

Now divide both the sides of the above expression by the rate at which

individuals recover i.e., γ.

βN
γ

> 1

Substituting 1
γ
= D into the above expression, we get the result that the

number of infectious persons increases following the introduction of an

infectious person into a susceptible population as: βND > 1

4.6 PREDICTIONS FOR EARLY STAGES IN AN EPI-

DEMIC

One of the key takeaways from the simple theory of epidemics is that

we should be able to estimate the basic reproduction number of the

infection using data on the prevalence of infectious individuals during

the early stages of an epidemic of a new or reemerging disease. There

are various formulas for estimating Ro from the early-stage of epidemic.

Each of them necessitates estimations which is known as the epidemic

growth rate, which is denoted by Λ. This prediction or estimation could

aid in directing the public health response to a new disease.

4.7 GROWTH RATE IN AN EPIDEMIC

The number of infectious individuals increases at a roughly constant

rate during the early stage of an epidemic. This rate is termed as the

epidemic growth rate.

During the initial stage of an epidemic, the following expression is ob-

tained for the number of infectious individuals at time t (I(t)).

I(t) ≈ I(0)eΛt

where,

I(0) = Number of infected individuals at the early stage.

Taking natural logarithm on both sides, we get a relation between I(t)

15



4.8. EQUATIONS FOR BASIC REPRODUCTION NUMBER

and Λ.

ln(I(t)) = ln(I(0)) + Λt

Plotting the natural logarithm of the number of infected individuals

against time, we get the result as a straight line and the gradient of

that line being Λ.

Hence, we can estimate the growth rate of an epidemic using empirical

data which is achieved by plotting the natural logarithm of the observed

number of individuals and calculating the gradient of the resulting line.

4.8 EQUATIONS FOR BASIC REPRODUCTION NUM-

BER

The equations that connect the basic reproduction number and the

epidemic growth rate is obtained as a result from different assumptions

about the average duration and distribution of both pre-infectious and

infectious periods.

The infections for which the pre-infectious duration is short when com-

pared to the infectious duration. The expression for the basic repro-

ductive number is given as:

Ro = 1 + ΛD

If neither the pre-infectious time period nor infectious time period is

short, then the equation for Ro is expressed as:

Ro = (1 + ΛD) (1 + ΛD′)

where,

D = Average infectious time period

D′ = Average pre-infectious time period

16



4.9. ESTIMATING THE AVERAGE FORCE OF INFECTION

4.9 ESTIMATING THE AVERAGE FORCE OF INFEC-

TION

As aforementioned, the relationship between the force of infection and

the total number of infectious individual at time t, provided these in-

dividuals contact each other randomly is represented by the equation

given below.

λ(t) = βI(t)

β: Rate of effective contact between two specific individuals per unit of

time

Since the population of infectious people changes over time, the force

of infection must likewise change over time if infections are to be mini-

mized. Furthermore, in the absence of vaccination or other treatments,

the average infection force remains roughly constant. We will omit the

t and use the symbol λ to symbolize this average value.

17



Chapter 5

A CASE STUDY OF KERALA

USING BASIC

REPRODUCTION NUMBER

5.1 INTRODUCTION

The largest worldwide health catastrophe of the twenty-first century

has been the severe acute respiratory syndrome coronavirus (COVID-

19). Patients infected with COVID-19 often exhibit common symptoms

such as coughing, fever, and respiratory problems. In the worst scenar-

ios, it may result in life-threatening medical issues like pneumonia and

kidney failure, which could result in patient death.

In order to save lives and lessen the social and economic effects of the

disease, it is crucial from a strategic and health care management per-

spective to understand how a disease spreads and how to predict when it

will do so. The outbreak began in Wuhan, a Chinese city, in December

2019. As a result of the connections between cities, nations, and even

continents, the virus has since multiplied exponentially in many nations

around the world. On March 11, 2020, the World Health Organization

declared it a global epidemic. According to research on COVID-19, it

spreads by respiratory droplets and direct human contact.

India, the second most populous nation in the world, is a developing

nation. Controlling COVID-19’s spread in India was therefore very dif-

18



5.2. SIR MODEL FOR COVID – 19 - SETTING UP OF MODEL

ficult. The first case of COVID-19 in India was reported from Kerala on

30 January 2020. Social distancing and awareness campaigns were con-

ducted as primary measures to prevent human-to-human transmission

of the virus. The Indian government declared the first official 14-day

nationwide lockdown on March 25, 2020. As a result, the public lock-

down has been imposed in India in five stages.

Under certain conditions, mathematical models have the ability to track

and predict the epidemic trajectory. Various mathematical and statis-

tical models have been proposed to comprehend the dissemination tra-

jectory for a pandemic. Among these models, Susceptible (S) - Infected

(I) - Recovered (R) - Model (SIR model) has been frequently used in

the past to predict the dynamics of various contagious diseases.

5.2 SIR MODEL FOR COVID – 19 - SETTING UP OF

MODEL

The SIR Model for COVID - 19 consists of three compartments - sus-

ceptible, infected and recovered.

5.3 SETTING UP OF EQUATIONS

In order to predict the epidemic of a disease, we are required to find

the value of Ro using the SIR model. Let us consider SIR model of first

form and second form.

In the SIR model of first form,

N(t) = S(t) + I(t) +R(t) ...................................................................... (i)

where,

N(t) = Total population size at time t
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5.3. SETTING UP OF EQUATIONS

S(t) = Total number of individuals who are susceptible at time t

I(t) = Total number of individuals who are infectious at time t

R(t) = Total number of individuals who are immune or recovered at

time t

dS(t)
dt

= - βS(t)I(t)
N

dI(t)
dt

= βS(t)I(t)
N

- γI(t)

dR(t)
dt

= γI(t)

For the SIR model of second form, divide equation (i) throughout by

N(t), we get

s(t) + i(t) + r(t) = 1

ds(t)
dt

= - βs(t)i(t)

di(t)
dt

= βs(t)i(t) - γi(t)

dr(t)
dt

= γi(t)

β is the average number of contacts of an infected person per unit

time. It is also known as infection rate of the disease.

S
N

is the fraction which is susceptible to contracting the disease.

β S
N

is the average number of new infected individuals generated by

one infected individual per unit time.

β S
N
I is the average of new infected individuals generated by all infected

individuals per unit time.
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5.3. SETTING UP OF EQUATIONS

dS(t)
dt

= - β S
N
I = - βSI

N

Here, negative sign indicates decrease in S(t) as dS(t)
dt

< 0

dI(t)
dt

= β S
N
I - γI(t)

where,

γ = 1
D

D = the number of days in the infectious period.

dR(t)
dt

= γI(t)

Ro denotes the relationship between the proportions of the population

that is susceptible.

Ro =
βS
γ

............................................................................................... (ii)

Ro=
β
γ
[N ∼= S]....................................................................................... (iii)

where,

β = Rate of Infection

γ = Rate of Recovery

In general, an epidemic will occur if the number of infected people

increases, i.e., i(t) is an increasing function.

We know that,

di(t)
dt

= βs(t)i(t) - γi(t)

i(t) > 0 ......................................................[ i(t) is an increasing function]

βs(t)i(t)− γi(t) > 0

(βs− γ)i > 0
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5.4. FINDING Ro FOR SIR MODEL OF COVID -19 FOR KERALA

βs > γ

βs
γ
> 1

Ro > 1 ........................................................................................[from (ii)]

Similarly, an epidemic will not occur if the number of infected peo-

ple decreases, i.e., i(t) is a decreasing function.

i(t) < 0 .......................................................[ i(t) is a decreasing function]

βs(t)i(t)− γi(t) < 0

(βs− γ)i < 0

βs < γ

βs
γ
< 1

Ro < 1 .......................................................................................[from (ii)]

From the above two conditions, we can conclude that:

• If Ro > 1, an epidemic will occur as the number of infected individ-

ual increases.

• If Ro < 1, an epidemic will not occur as the number of infected

individual decreases.

5.4 FINDING Ro FOR SIR MODEL OF COVID -19 FOR

KERALA

Using the above conditions for Ro, we will verify the results whether an

epidemic occurs or does not occur in a given population.
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5.4. FINDING Ro FOR SIR MODEL OF COVID -19 FOR KERALA

5.4.1 SETTING UP OF THE QUESTION

Consider the data for the confirmed, death and recovery cases in a

given demographics. Here, we have chosen the population statistics for

Kerala between February 2020 and August 2022. The population data

for each case and year is presented in tabular format.

MONTH (2020) CONFIRMED RECOVERED DEATH

FEBRUARY 2 3 0

MARCH 238 21 2

APRIL 256 359 1

MAY 772 207 6

JUNE 3173 1714 15

JULY 19171 10719 49

AUGUST 51772 38519 221

SEPTEMBER 120721 76682 448

OCTOBER 236999 212100 742

NOVEMBER 169877 198389 760

DECEMBER 157951 153767 828

Data for the year 2020

MONTH (2021) CONFIRMED RECOVERED DEATH

JANUARY 168245 161726 671

FEBRUARY 130225 151291 454

MARCH 65181 88907 424

APRIL 446599 167397 687

MAY 955396 1048584 3507

JUNE 397586 499202 4420

JULY 466596 399382 3546

AUGUST 666472 608035 4007

SEPTEMBER 623625 695658 4299

OCTOBER 287799 344519 6594

NOVEMBER 173157 200187 8451

DECEMBER 105363 121909 7662

Data for the year 2021
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5.5. CALCULATION OF Ro

MONTH (2022) CONFIRMED RECOVERED DEATH

JANUARY 778491 433716 6601

FEBRUARY 473545 793526 10938

MARCH 32766 54248 2580

APRIL 9045 9063 1155

MAY 16525 12420 679

JUNE 84456 60767 276

JULY 79702 95027 461

AUGUST 33532 37820 358

Data for the year 2022

We will be considering the above data for each cases of each month

for the calculation of Ro.

5.5 CALCULATION OF Ro

Using the aforementioned conditions for the basic reproduction num-

ber, we are required to calculate the value of Ro in order substantiate

the occurrence of epidemic in each month of 2020, 2021 and 2022 for

the given population of Kerala.

Consider the data of February 2020.

Here, β = 2 and γ = 3

We know that,

Ro = β
γ
= 2

3
= 0.667

Consider the data of March 2020.

Here, β = 238 and γ = 21

We know that,

Ro = β
γ
= 238

21
= 11.333

Consider the data of April 2020.

Here, β = 256 and γ = 359

We know that,
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5.5. CALCULATION OF Ro

Ro = β
γ
= 256

359
= 0.713

Consider the data of May 2020.

Here, β = 772 and γ = 207

We know that,

Ro = β
γ
= 772

207
= 3.729

Consider the data of June 2020.

Here, β = 3173 and γ = 1714

We know that,

Ro = β
γ
= 3173

1714
= 1.851

Consider the data of July 2020.

Here, β = 19171 and γ = 10719

We know that,

Ro = β
γ
= 19171

10719
= 1.788

Consider the data of August 2020.

Here, β = 51772 and γ = 38519

We know that,

Ro = β
γ
= 51772

38519
= 1.344

Consider the data of September 2020.

Here, β = 120721 and γ = 76682

We know that,

Ro = β
γ
= 120721

76682
= 1.574

Consider the data of October 2020.

Here, β = 236999 and γ = 212100

We know that,

Ro = β
γ
= 236999

212100
= 1.117

Consider the data of November 2020.
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5.5. CALCULATION OF Ro

Here, β = 169877 and γ = 198389

We know that,

Ro = β
γ
= 169877

198389
= 0.856

Consider the data of December 2020.

Here, β = 157951 and γ = 153767

We know that,

Ro = β
γ
= 157951

153767
= 1.027

Consider the data of January 2021.

Here, β = 168245 and γ = 161726

We know that,

Ro = β
γ
= 168245

161726
= 1.040

Consider the data of February 2021.

Here, β = 130225 and γ = 151291

We know that,

Ro = β
γ
= 130225

151291
= 0.860

Consider the data of March 2021.

Here, β = 65181 and γ = 88907

We know that,

Ro = β
γ
= 65181

88907
= 0.733

Consider the data of April 2021.

Here, β = 446599 and γ = 167397

We know that,

Ro = β
γ
= 446599

167397
= 2.667

Consider the data of May 2021.

Here, β = 955396 and γ = 1048584

We know that,

Ro = β
γ
= 955396

1048584
= 0.911
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5.5. CALCULATION OF Ro

Consider the data of June 2021.

Here, β = 397586 and γ = 499202

We know that,

Ro = β
γ
= 397586

499202
= 0.796

Consider the data of July 2021.

Here, β = 466596 and γ = 399382

We know that,

Ro = β
γ
= 466596

399382
= 1.168

Consider the data of August 2021.

Here, β = 666472 and γ = 608035

We know that,

Ro = β
γ
= 666472

608035
= 1.096

Consider the data of September 2021.

Here, β = 623625 and γ = 695658

We know that,

Ro = β
γ
= 623625

695658
= 0.896

Consider the data of October 2021.

Here, β = 287799 and γ = 344519

We know that,

Ro = β
γ
= 287799

344519
= 0.835

Consider the data of November 2021.

Here, β = 173157 and γ = 200187

We know that,

Ro = β
γ
= 173157

200187
= 0.864

Consider the data of December 2021.

Here, β = 105363 and γ = 121909

27



5.5. CALCULATION OF Ro

We know that,

Ro = β
γ
= 105363

121909
= 0.864

Consider the data of January 2022.

Here, β = 778491 and γ = 433716

We know that,

Ro = β
γ
= 778491

433716
= 1.795

Consider the data of February 2022.

Here, β = 473545 and γ = 793526

We know that,

Ro = β
γ
= 473545

793526
= 0.596

Consider the data of March 2022.

Here, β = 32766 and γ = 54248

We know that,

Ro = β
γ
= 32766

54248
= 0.604

Consider the data of April 2022.

Here, β = 9045 and γ= 9063

We know that,

Ro = β
γ
= 9045

9063
= 0.998

Consider the data of May 2022.

Here, β = 16525 and γ = 12420

We know that,

Ro = β
γ
= 16525

12420
= 1.330

Consider the data of June 2022.

Here, β = 84456 and γ = 60767

We know that,

Ro = β
γ
= 84456

60767
= 1.389
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5.6. OBSERVATION

Consider the data of July 2022.

Here, β = 79702 and γ = 95027

We know that,

Ro = β
γ
= 79702

95027
= 0.838

Consider the data of August 2022.

Here, β = 33532 and γ = 37820

We know that,

Ro = β
γ
= 33532

37820
= 0.886

5.6 OBSERVATION

The value of Ro for each month of 2020, 2021 and 2022 is presented in

tabular format.

MONTH (2020) VALUE OF Ro

FEBRUARY 0.667

MARCH 11.333

APRIL 0.713

MAY 3.729

JUNE 1.851

JULY 1.788

AUGUST 1.334

SEPTEMBER 1.795

OCTOBER 1.117

NOVEMBER 0.856

DECEMBER 1.027

Ro value for the year 2020
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5.6. OBSERVATION

MONTH (2021) VALUE OF Ro

JANUARY 1.040

FEBRUARY 0.860

MARCH 0.733

APRIL 2.667

MAY 0.911

JUNE 0.796

JULY 1.168

AUGUST 1.096

SEPTEMBER 0.896

OCTOBER 0.835

NOVEMBER 0.864

DECEMBER 0.864

Ro value for the year 2021

MONTH (2022) VALUE OF Ro

JANUARY 1.795

FEBRUARY 0.596

MARCH 0.604

APRIL 0.998

MAY 1.330

JUNE 1.389

JULY 0.838

AUGUST 0.886

Ro value for the year 2022

From the above observation, we can scrutinize that for the months

with Ro > 1, the number of infected individuals were high which led to

the occurrence of epidemic, whereas, for the months with Ro < 1, the

number of infected individuals were comparatively low which did not

led to the occurrence of the epidemic in the given population.
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5.7. VERIFICATION OF RESULTS

5.7 VERIFICATION OF RESULTS

The following graph depicts the peaks and troughs of the epidemic

during three consecutive years, from February 2020 to August 2022.

We were able to validate whether an epidemic actually occurred or not

for the given population between February 2020 and August 2022 using

basic reproduction number, Ro. The number of infectious individuals

were high when Ro > 1 which led to the occurrence of epidemic and the

number of infectious individuals were low when Ro < 1 which did not

led to the occurrence of epidemic.

In order to strengthen our result, we can verify the fact that the first

official nationwide lockdown was in the month of March 2020. Here,

we can observe that the Ro value for March 2020 was greater than 1,

i.e., Ro = 11.333.

Hence, we have substantiated whether an epidemic occurred or not

for each month during 2020, 2021 and 2022 using basic reproduction

number and the obtained results are accurate.

31



Chapter 6

CONCLUSION

We recognised the applications of mathematical modelling in our life af-

ter reading the content offered in this project. We understand that this

is only an attempt to introduce the reader to a few novel techniques.

In this project, we were able to substantiate whether an epidemic oc-

curred or not between February 2020 and August 2022 for the given

demographic.

Mathematical modelling is a wide, diverse area that implores engineers,

scientists, and mathematicians to engage their interest and commitment

in order to tackle the issues faced by humanity. A mathematical model

is an abstract depiction of a phenomenon created through the use of

equations that generate perspectives of the general behaviour of an epi-

demic event, as well as serving as a means of examining the influence

of specific factors on the spread of disease. It is crucial to keep in

mind that these models are created for specific situations utilising the

information that is currently available and making assumptions in the

absence of such knowledge while evaluating their forecasts. These as-

sumptions may have a significant impact on how these models forecast

the future and how those predictions are interpreted.

Mathematical modelling is a highly versatile method used in the epi-

demiology of infectious diseases that enables extrapolations of epidemic

behaviours as well as the detection of patterns in epidemics.

32



REFERENCES

[1] Brauer, F. and Castillo-Chavez, C. eds., 2012. Mathematical mod-

els for communicable diseases. Society for Industrial and Applied

Mathematics.

[2] Diekmann, O. and Heesterbeek, J.A.P., 2000. Mathematical epi-

demiology of infectious diseases: model building, analysis and in-

terpretation (Vol. 5). John Wiley & Sons.
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