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V 

 

ABSTRACT 

 

The term “black hole” is of a very recent origin. It was coined in 1969 by the 

American scientist John Wheeler, as a graphic description to an idea that dates back 

to at least two hundred years, to a time when there were two theories about light-the 

corpuscular theory and the wave theory. We now have a more concise theory in this 

respect-the wave-particle duality theory of quantum mechanics.  

John Michell, in 1783, was the first to provide a breakthrough, through his paper, 

Philosophical transactions of the royal society of London. In this paper, he pointed 

out that a star that was sufficiently massive and compact will have such a strong 

gravitational field that even light cannot escape-any light emitted from the surface of 

the star will be dragged back by the star’s gravitational attraction before it could get 

very far. Michell suggested that there might be large number of stars just like this. 

Such entities which form black voids in space came to be known as black holes. 

Black hole thermodynamics is a rich subject, straddling both the classical and 

quantum aspects of gravity. The thermodynamic charges of a black hole such as 

entropy and temperature, while intrinsically quantum in nature, are related to classical 

attributes such as horizon area and surface gravity. Indeed, it was considering the 

classical response of a black hole to infalling matter that led Bardeen, Carter, and 

Hawking to make the link between black hole variations and laws of 

thermodynamics. More recently, our understanding of black hole thermodynamics 

and the interpretation of the various parameters has also been improving. 

The outline of this paper is as follows: First, we reviewed the various thermodynamic 

aspects of non-rotating and uncharged black holes like Reissner- Nordström, BTZ 

and Bardeen black holes. The findings were then incorporated to investigate, derive 

and compare thermodynamical parameters of Schwarzschild and Schwarzschild-AdS 

black holes.  

.  
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                                                                       INTRODUCTION 

 

Thermodynamics is a branch of physics that deals with the transformation of heat 

into mechanical work. Thermodynamics does not take into account the atomic 

constitution of matter but it only deals with the macroscopic properties of the 

system. A system may be defined as a definite quantity of matter (solid, liquid, gas) 

bounded by some closed surface. The simplest example of a system is a gas 

contained in a cylinder with a movable piston. Anything outside the system which 

can exchange energy with it and has a direct bearing on the behavior of the system 

is known as its surroundings. A system may be separated from its surroundings by a 

real or an imaginary boundary through which heat or mechanical energy may pass. 

The existence of a boundary is essential to visualize the system distinctly from the 

rest of the universe .A thermodynamic system may contain no substance at all, but 

may consist of radiant energy or electric and magnetic field. The combination of a 

system and its surrounding is called the universe. The four laws of thermodynamics 

postulated so far govern the fundamental working of the universe. 

During the past 30 years, research in the theory of black holes in general relativity 

has brought to light strong hints of a very deep and fundamental relationship 

between gravitation, thermodynamics, and quantum theory. The cornerstone of this 

relationship is black hole thermodynamics, where it appears that certain laws of 

black hole mechanics are, in fact, simply the ordinary laws of thermodynamics 

applied to a system containing a black hole. Indeed, the discovery of the 

thermodynamic behaviour of black holes — achieved primarily by classical and 

semi classical analyses — has given rise to most of our present physical insights 

into the nature of quantum phenomena occurring in strong gravitational fields. 

At the purely classical level, black holes in general relativity obey certain laws 

which bear a remarkable mathematical resemblance to the ordinary laws of 

thermodynamics. 

 Classically, black holes are perfect absorbers but do not emit anything; their 

physical temperature is absolute zero. However, in quantum theory black 

holes emit Hawking radiation with a perfect thermal spectrum. This allows a 
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consistent interpretation of the laws of black hole mechanics as physically 

corresponding to the ordinary laws of thermodynamics.  

 The generalized second law (GSL) directly links the laws of black hole 

mechanics to the ordinary laws of thermodynamics. 

 The classical laws of black hole mechanics together with the formula for the 

temperature of Hawking radiation allow one to identify a quantity associated 

with black holes — namely A/4 in general relativity — as playing the 

mathematical role of entropy. The apparent validity of the GSL provides strong 

evidence that this quantity truly is the physical entropy of a black hole. 

We review the derivation of ordinary laws of thermodynamics applicable to ordinary 

thermodynamic systems and then extent these derivations to black hole 

thermodynamics. We then derive the various thermodynamic parameters of 

Schwarzschild and Schwarzschild Ads black holes. Finally we compare the results to 

infer the outcome posed to the physical world. 
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CHAPTER-1 

INTRODUCTION 

A black hole is a region of space-time where gravity is so strong that no particles or 

even electromagnetic radiation such as light can escape from it. The story of the 

black hole begins with Schwarzschild’s discovery of the Schwarzschild solution in 

1916, soon after Einstein’s foundation of the general theory of relativity. 

The theory of general relativity predicts that a sufficiently compact mass can 

deform space time to form a black hole .The boundary of no escape is called the 

event horizon. Although it has a great effect on the fate and circumstances of an 

object crossing it, it has no locally detectable features according to general 

relativity. In many ways, a black hole acts like an ideal black body, as it reflects no 

light. Moreover, quantum field theory in curved space time predicts that event 

horizons emit Hawking radiation, with the same spectrum as a black body of a 

temperature inversely proportional to its mass. This temperature is of the order of 

billionths of a kelvin for stellar black holes, making it essentially impossible to 

observe directly. 

Objects whose gravitational fields are too strong for light escape were first 

considered in the 18th century by John Michell and Pierre-Simon Laplace. In 1916, 

Karl Schwarzschild found the first modern solution of general relativity that would 

characterize a black hole. 

Black holes of stellar mass form when massive stars collapse at the end of their life 

cycle. After a black hole has formed, it can grow by absorbing mass from its 

surroundings. Supermassive black holes of millions of solar masses may form by 

absorbing others stars and merging with other black holes. 

The Schwarzschild radius is the boundary of the black hole which is determined by 

Karl Schwarzschild and it completely depends on the mass of Black hole. If escape 

velocity is greater than velocity of light, c, nothing can escape its horizon and we 
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have a black hole. Any object with a physical radius smaller than Schwarzschild 

radius will be a black hole. Anything that crosses the event horizon needs to be 

travelling at speed greater than velocity of light, c. When a massive star has 

exhausted the internal thermonuclear fuels in its core at the end of its life, the core 

becomes unstable and gravitationally collapses inward upon itself and stars outer 

layers are blown away .The crushing weight of constituent matter falling in from all 

sides compresses the dying star to a point of zero volume and infinite density called 

the singularity. This singularity is covered by Event Horizon. Radius of the sphere 

representing the event horizon is called the Schwarzschild radius,𝑅𝑠 =
2𝐺𝑀

𝑐2
 

NO HAIR THEOREM 

The no-hair theorem was originally formulated to describe isolated black holes, but 

an extended version now describes the more realistic case of a black hole distorted 

by nearby matter. According to this theorem only three parameters are required to 

define the most general black hole. They are mass M, charge Q and angular 

momentum J. Black holes have no hair whereas Star has many hairs(or parameters). 

1.1 CLASSES OF BLACK HOLE 

Based on no-hair theorem the black holes can be characterized into three 

 Static black holes with no charge ,described by Schwarzschild solution 

 Black holes with electrical charge described by Reissner Nordstrom solutions 

 Rotating black holes described by Kerr solutions 

SCHWARZSCHILD BLACK HOLE 

Karl Schwarzschild in 1916 gives the First solution of Einstein’s equations of 

General Relativity. He describes gravitational field in empty space around a non-

rotating mass space-time interval in Schwarzschild’s solution. Schwarzschild metric 

is a spherically symmetric black hole. It is the simplest kind parameterized by a 

single parameter mass, M. Its line element is defined by: 

d𝒔𝟐 = (𝟏 −
𝒓𝒔

𝒓
) 𝒅𝒕𝟐 − (𝟏 −

𝒓𝒔

𝒓
)−𝟏d𝒓𝟐 − 𝒓𝟐(𝒅𝜽𝟐 + 𝒔𝒊𝒏𝟐𝜽𝒅∅𝟐) 

It exhibits a singularity at the Schwarzschild radius r=2M.This is the surface below 

which one can no longer escape from the black hole. 
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REISSNER-NORDSTROM BLACK HOLE 

The Reissner-Nordstrom geometry describes the geometry of empty space 

surrounding a charged black hole. The German engineer, Reissner and the Finnish 

physicist, Nordstrom independently solved the Einstein-Maxwell field equations for 

charged spherically symmetric systems ,in 1916 and 1918,respectively.Since most 

stars ,and thus most black holes are formed from the collapse of stars, have angular 

momentum ,it is desirable to generalize the spherical, non-rotating Schwarzschild 

solution to that of rotating source. So the difference from Schwarzschild metric is 

that this has an additional Coulomb field. The line element for Reissner –Nordstrom 

black holes is given by: 

d𝒔𝟐 = − (𝟏 −
𝟐𝑴

𝒓
+

𝑸𝟐

𝒓𝟐 ) 𝒅𝒕𝟐 + (𝟏 −
𝟐𝑴

𝒓
+

𝑸𝟐

𝒓𝟐 )
−𝟏

𝒅𝒓𝟐 + 𝒓𝟐(𝒅𝜽𝟐 + 𝒔𝒊𝒏𝟐𝜽𝒅𝝋𝟐) 

 As the charged black holes in a realistic environment will quickly attract opposite 

charges from the surroundings and get neutralized, this solution is not of 

astrophysical interest. 

KERR BLACK HOLE 

Both the Schwarzschild and Reissner –Nordstrom black holes are spinless. The 

solution for a rotating black hole was put forward by Kerr in 1963 with an 

additional 37 parameter, the angular momentum, J. The line element for black holes 

having mass and angular momentum is given by, 

       d𝒔𝟐 =
∆

𝝆𝟐
(𝒅𝑻 − 𝒉𝒔𝒊𝒏𝟐𝜽𝒅∅)𝟐 −

𝝆𝟐

∆
𝒅𝑹𝟐 − 𝝆𝟐𝒅𝟎𝟐 −

𝒔𝒊𝒏𝟐𝜽

𝝆𝟐
[(𝑹𝟐 + 𝒉𝟐)𝒅𝝓 − 𝒉𝒅𝑻]𝟐 

where, h≅
𝐽

𝑀
≈ 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑚𝑎𝑠𝑠, 

△= 𝑹𝟐 − 𝟐𝑮𝑴𝑹 + 𝒉𝟐 

                                                  𝝆𝟐 = 𝑹𝟐 + 𝒉𝟐𝒄𝒐𝒔𝟐𝜽 

As charged black holes are not considered physically, astrophysical black holes are 

mainly Kerr. 

KERR NEWMAN BLACK HOLE 
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The Kerr-Newman metric is an asymptotically flat , stationary solution of the 

Einstein-Maxwell equations in general relativity .It describes the space time 

geometry in the region surrounding an electrically charged, rotating mass .It 

generalizes the Kerr metric by taking into account the field energy of an 

electromagnetic field ,in addition to describing rotation. 

Such solutions do not include any electric charges other than that associated with 

gravitational field and are thus termed as vacuum solutions. Newman combined the 

RN solution with Kerr solution and generated the space time geometry for charged 

spinning mass. The metric equation for charged rotating black holes is as same as 

equation but with Δ defined as 

                                 𝚫 = 𝑹𝟐 − 𝟐𝑮𝑴𝑹 + 𝒉𝟐 + 𝑮𝑸𝟐   

                                   

1.2 BLACK HOLE STRUCTURE 

Although black holes come in a variety of masses and sizes, their structures are all 

alike. A black hole's entire mass is concentrated in an almost infinitely small and 

dense point called a singularity. This point is surrounded by the event horizon - the 

distance from the singularity at which its escape velocity exceeds the speed of light. 

And a rotating black hole is surrounded by the ergosphere, a region in which the 

black hole drags space itself. 

The singularity forms when matter is compressed so tightly that no other force of 

nature can balance it. In a "normal" star, like the Sun, the inward pull of gravity is 

balanced by the outward pressure of the nuclear reactions in its core. In the 

collapsed stars known as white dwarfs or neutron stars, other forces prevent the 

ultimate collapse. 

If there is too much mass in a given volume, though, the object reaches a critical 

density where nothing can prevent its ultimate collapse to form a black hole. 

Because gravity overcomes the other forces of nature, a singularity follows its own 

bizarre rules of physics. Time and space as we know them are crushed out of 

existence, and gravity becomes infinitely strong. 
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As the distance from the singularity increases, the escape velocity decreases. Escape 

velocity is the speed at which an object must move to get away. For Earth, the 

escape velocity is around seven miles (11 km) per second. In other words, a 

spacecraft must go at least that fast to escape Earth's gravitational pull and travel to 

another planet. 

At a certain distance from the singularity, the escape velocity drops to the speed of 

light (about 186,000 miles/300,000 km per second). This distance is known as the 

Schwarzschild radius, in honour of Karl Schwarzschild, who first defined it. This 

radius depends on the mass of the black hole. For a black hole as massive as the 

Sun, the radius is about two miles (3 km). For every extra solar mass, the radius 

increases by two miles. 

This radius enfolds the singularity in a zone of blackness - in other words, it makes 

a black hole black. It gives the black hole a visible surface, which is known as the 

event horizon. This is not a solid surface, though. It is simply the "point of no 

return" for anything that approaches the black hole. Once any object - from a 

starship to a particle of light - crosses inside this horizon, it cannot get back out. It is 

trapped inside the black hole. 

Anything that enters the black hole increases its mass. And as the mass goes up, the 

size of the event horizon gets bigger, too. So if you feed a black hole, it gets fatter! 

If the black hole doesn't rotate, then its gravitational influence on its environment is 

straightforward. If the black hole is spinning, though, then its gravitational effects 

are more complicated. It actually pulls the fabric of space time along with it - an 

effect called frame dragging. This area is known as the ergosphere. Seen in cross-

section, it is oval-shaped, with the region of influence extending farther into space 

at the black hole's equator than at its poles. 
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CHAPTER 2 

 

THERMODYNAMICS 

 

2.1 CLASSICAL THERMODYNAMICS 

Thermodynamics is a collection of useful mathematical relations between 

quantities, every one of which is independently measurable. Although 

thermodynamics tells us nothing, whatsoever, of the microscopic explanation of 

macroscopic changes, it is useful because it can be used to quantify many 

unknowns.  

The laws of thermodynamics provide an elegant mathematical expression of some 

empirically-discovered facts of nature. The principle of energy conservation allows 

the energy requirements for processes to be calculated. The principle of increasing 

entropy (and the resulting free-energy minimization) allows predictions to be made 

of the extent to which those processes may proceed. 

The four laws of thermodynamics, even today, serve to be the foundation governing 

the state of a system. These are: 

 Zeroth Law: 

            States that if systems A and B are separately in thermal equilibrium 

with C, then systems A and B are in thermal equilibrium with each other. 

 

 First Law: 

        Is consistent with the principle of energy conservation and it states that 

the energy of an isolated system (one that does not exchange matter or energy 

with its surroundings) remains constant. 

                                             

                                      𝚫H = q + 𝒘𝒔 

 

This equation allows us to calculate the amount of energy transferred to or from any 

process, simply by calculating the difference in enthalpy before and after. As 

enthalpy, H, is a state function, its value does not in any way depend on the process 
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itself or on the imaginary path followed during the process. Enthalpy is a function 

of temperature and pressure only. 

However, the dependence on pressure is small in most cases, and is usually ignored 

at reasonable pressures. 

A process is said to be endothermic when 𝚫H > 0, and exothermic when 𝚫H < 0 

 

 Second Law: 

             Is consistent with the principle of increasing entropy. Second law of 

thermodynamics states that the entropy in an isolated system always increases. 

Any isolated system spontaneously evolves towards thermal equilibrium—the 

state of maximum entropy of the system. Thus, the entropy of the universe 

only increases and never decreases. 

 Third Law: 

           The entropy of a system at absolute zero temperature either vanishes or 

becomes independent of the intensive thermodynamic parameters. To bring a 

system to absolute zero temperature involves an infinite number of processes 

or steps. 

 

2.2 BLACK HOLE THERMODYNAMICS 

It is apparent that energy can flow not just into black holes but also out of them, and 

they can act as an intermediary in energy exchange processes. Energy extraction is 

maximally efficient when the horizon area does not change, and processes that 

increase the area are irreversible, since the area cannot decrease. The analogy with 

thermodynamic behaviour is striking, with the horizon area playing the role of 

entropy. This analogy was vigorously pursued as soon as it was recognized at the 

beginning of the 1970’s. 

Bekenstein and Hawking showed that the black holes have an entropy which is 

proportional to the are of the black hole. This was analogous to the second law of 

thermodynamics. 

The entropy of a black hole is given by, 
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                                          S=
𝜿𝑪𝟑𝑨

𝟒𝑮ℏ
       Bekenstein Hawking formula 

Where A is the area of the event horizon, 𝐿𝑝 is the Planck length, G is the Newton’s 

gravity constant, ℏ is the reduced Planck’s constant. 

Classical aspects of black hole thermodynamics is worth discussing. They are 

important in their own right, and they form the foundation for quantum black hole 

thermodynamics. Moreover, it is intriguing to see what can be inferred without 

invoking quantum theory, and it may teach us something about the deeper origins of 

gravitation. In proceeding this way we are following more or less the path that was 

taken historically. 

THE FOUR LAWS OF BLACK HOLE MECHANICS 

 

By its very definition, a classical black hole cannot emit anything, so it seemed 

futile at first to attempt to associate a nonzero temperature with it. On the other 

hand, there must be some relationship between dM,  

the change in the mass of a black hole, and dA, the change in its horizon area. 

According to Penrose process and its charged analogue, when dA = 0, we get 

                                            dM = ΩdJ + ΦdQ,  

Where J and Q are the angular momentum and charge of the hole and Ω and Φ are 

the angular velocity and electric potential of the horizon. This expresses changes in 

the energy of the hole in reversible processes like work done on a 

thermodynamic system or a change in the number of particles. It is like the First 

Law of thermodynamics but with the heat flow term dQ = T dS missing. 

Zeroth Law 

 

The surface gravity of the horizon of a black hole, κ, is defined locally on the 

horizon, and it is seen that it’s value is  always a constant over the horizon of a 

stationary black hole. This constancy is reminiscent of the Zeroth Law of 

thermodynamics which states that 

the temperature is uniform everywhere in a system in thermal equilibrium. Here, κ, 

plays the role of temperature. This constancy of κ can be traced 

to the special properties of the horizon of a stationary black hole. Black holes have 
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a well-defined temperature, which is as a matter of fact proportional to the surface 

gravity: 

T=
ℏ

𝟐𝝅
𝜿 

 

FIRST LAW            

First law for a stationary black hole gives relation between change in mass M, 

angular momentum J and area A, 

dM=
𝜿𝒅𝑨

𝟖𝝅𝑮
+ 𝛀𝒅𝑱 

           where Ω  is the angular velocity of the event horizon. 

 

For a rotating charged black hole, the first law takes the form, 

dM=
𝜿𝒅𝑨

𝟖𝝅𝑮
+ 𝛀𝒅𝑱 

This is analogous to the first law of thermodynamics. 

 

SECOND LAW 

 

The Area theorem of general relativity states that the area of a black hole can never 

decrease in any process i.e., 

∆𝑨 ≥ 𝟎 

Bekenstein observed that this is analogous to the second law of thermodynamics. 

By second law the total entropy of a closed system can never decrease through any 

process. This law requires black hole to have entropy. If it carried no entropy, 

falling of mass into a black hole would violate the second law. But this law is 

not informative in its original form. For example, if an ordinary system falls 

into a black hole, the ordinary entropy becomes invisible to an exterior 

observer, so from the observer’s point of view, the concept of saying increase 
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in ordinary entropy doesn’t provide any insight. Thus, the ordinary second law 

is transcended. 

GENERALIZED SECOND LAW 

Including the black hole entropy, gives a more useful law, the generalized second law 

of thermodynamics, the sum of ordinary entropy outside black holes and the 

total black hole entropy never decreases and typically increases as a 

consequence of generic transformations of the black hole. When matter entropy 

flows into a black hole, the law requires an increase in black hole entropy. 

During the process of Hawking radiation, the black hole’s area decreases, in 

violation of the area theorem. The generalized second law predicts that the 

emergent Hawking radiation entropy shall more than compensate for the drop 

in black hole entropy. 

THIRD LAW 

 It states that it is not possible to form a black hole with vanishing surface gravity. i.e 

𝜅 = 0, cannot be achieved. A black hole with T=0, has, 𝜅 = 0. This 

corresponds to an extreme Kerr black hole with J=𝑀2  
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                                                       CHAPTER 3 

 

THERMODYNAMICS OF SCHWARZSCHILD BLACK HOLE 

 

Karl Schwarzschild in 1916 gave the first solution of Einstein’s equations of general 

relativity. He describes gravitational field in empty space around a non-rotating mass 

space-time interval in Schwarzschild’s solution. Schwarzschild metric is defined for 

a mass that is spherically symmetric, non-rotating and uncharged.  

 

This provided an exact solution to the Einstein field equations that describes 

the gravitational field outside a spherical mass, on the assumption that the electric 

charge of the mass, angular momentum of the mass, and universal cosmological 

constant are all zero. The solution is a useful approximation for describing slowly 

rotating astronomical objects such as many stars and planets, including Earth and the 

Sun. It was found by Karl Schwarzschild in 1916, and around the same time 

independently by Johannes Droste, who published his more complete and modern-

looking discussion four months after Schwarzschild.  

According to Birkhoff's theorem, the Schwarzschild metric is the most 

general spherically symmetric vacuum solution of the Einstein field equations. 

A Schwarzschild black hole or static black hole is a black hole that has neither electric 

charge nor angular momentum. A Schwarzschild black hole is described by the 

Schwarzschild metric, and cannot be distinguished from any other Schwarzschild 

black hole except by its mass. 

The Schwarzschild black hole is characterized by a surrounding spherical boundary, 

called the event horizon, which is situated at the Schwarzschild radius, often called 

the radius of a black hole. The boundary is not a physical surface, and a person who 

https://en.wikipedia.org/wiki/Einstein_field_equations
https://en.wikipedia.org/wiki/Gravitational_field
https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Angular_momentum
https://en.wikipedia.org/wiki/Cosmological_constant
https://en.wikipedia.org/wiki/Cosmological_constant
https://en.wikipedia.org/wiki/Star
https://en.wikipedia.org/wiki/Planet
https://en.wikipedia.org/wiki/Karl_Schwarzschild
https://en.wikipedia.org/w/index.php?title=Johannes_Droste&action=edit&redlink=1
https://en.wikipedia.org/wiki/Birkhoff%27s_theorem_(relativity)
https://en.wikipedia.org/wiki/Rotational_symmetry
https://en.wikipedia.org/wiki/Vacuum_solution_(general_relativity)
https://en.wikipedia.org/wiki/Black_hole
https://en.wikipedia.org/wiki/Event_horizon
https://en.wikipedia.org/wiki/Schwarzschild_radius
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fell through the event horizon (before being torn apart by tidal forces), would not 

notice any physical surface at that position; it is a mathematical surface which is 

significant in determining the black hole's properties. Any non-rotating and non-

charged mass that is smaller than its Schwarzschild radius forms a black hole. The 

solution of the Einstein field equations is valid for any mass M, so in principle 

(according to general relativity theory) a Schwarzschild black hole of any mass could 

exist if conditions became sufficiently favorable to allow for its formation. 

In the vicinity of a Schwarzschild black hole, space curves so much that even light 

rays are deflected, and very nearby light can be deflected so much that it travels 

several times around the black hole. 

In Schwarzschild coordinates (t,r,𝜃, 𝜑),the Schwarzschild metric (or equivalently, 

the line element for proper time) has the form: 

                              

Furthermore, 

 d𝜏2is positive for timelike curves, in which case 𝜏  is the proper 

time (time measured by a clock moving along the same world line with 

a test particle) 

 c is the speed of light, 

  t is, for 𝑟 > 𝑟𝑠 ,the time coordinate (measured by a clock located infinitely 

far from the massive body and stationary with respect to it), 

  r is, for  𝑟 > 𝑟𝑠  ,the radial coordinate (measured as the circumference, 

divided by 2π, of a sphere centered around the massive body), 

 𝜑 is the longitude of  Ω(𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎 𝑝𝑜𝑖𝑛𝑡 𝑜𝑛 𝑡𝑤𝑜 𝑠𝑝ℎ𝑒𝑟𝑒𝑠 𝑆2 )(also in 

radians) around the chosen z-axis, and 

 𝑟𝑠   is the Schwarzschild radius of the massive body, a scale factor which 

is related to its mass M  by   𝒓𝒔 =
𝟐𝑮𝑴

𝒄𝟐    where G is the gravitational 

constant 

The Schwarzschild metric has a singularity for r=0  which is an intrinsic 

curvature singularity.  It also seems to have a singularity on the event 

https://en.wikipedia.org/wiki/Schwarzschild_coordinates
https://en.wikipedia.org/wiki/Line_element
https://en.wikipedia.org/wiki/Proper_time
https://en.wikipedia.org/wiki/Proper_time
https://en.wikipedia.org/wiki/Proper_time
https://en.wikipedia.org/wiki/World_line
https://en.wikipedia.org/wiki/Test_particle
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Longitude
https://en.wikipedia.org/wiki/Schwarzschild_radius
https://en.wikipedia.org/wiki/Scale_factor
https://en.wikipedia.org/wiki/Gravitational_constant
https://en.wikipedia.org/wiki/Gravitational_constant
https://en.wikipedia.org/wiki/Event_horizon
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horizon r=𝑟𝑠 . Depending on the point of view, the metric is therefore 

defined only on the exterior region 𝑟 > 𝑟𝑠 only on the interior region 𝑟 <

𝑟𝑠 or their disjoint union. However, the metric is actually non-singular 

across the event horizon. For r>>𝑟𝑠, the Schwarzschild metric is 

asymptotic to the standard Lorentz metric on Minkowski space. For 

almost all astrophysical objects, the ratio 
𝑟𝑠

𝑅
 is extremely small. The ratio 

becomes large only in close proximity to black holes and other ultra-

dense objects such as neutron stars. 

The radial coordinate turns out to have physical significance as the "proper distance 

between two events that occur simultaneously relative to the radially moving 

geodesic clocks, the two events lying on the same radial coordinate line". 

The Schwarzschild solution is analogous to a classical Newtonian theory of gravity 

that corresponds to the gravitational field around a point particle. Even at the surface 

of the Earth, the corrections to Newtonian gravity are only one part in a billion. 

In this chapter, we focus on the thermodynamic parameters of the Schwarzschild 

black hole by deriving associated thermodynamic parameters like Mass, Radius, 

Temperature, Entropy and Gibbs free energy. Each relation provides a distinct 

expression in terms of the horizon radius and length of the black hole.                                                                                                                                                                                                                                                                                                                                    

 

(i) TEMPERATURE 

 

Line element for spherically symmetric vacuum metric is most familiar in 

Schwarzschild coordinates: 

                 d𝒔𝟐 = (𝟏 −
𝒓𝒔

𝒓
) 𝒅𝒕𝟐 − (𝟏 −

𝒓𝒔

𝒓
)−𝟏d𝒓𝟐 − 𝒓𝟐(𝒅𝜽𝟐 + 𝒔𝒊𝒏𝟐𝜽𝒅∅𝟐)        ---(1) 

The metric function is given by: 

                                                 f(r)=(1-
𝒓𝒔

𝒓
)                                                         -----(2) 

The derivative of the metric function w.r.t r is 

                             f’(r)=(
𝒓𝒔

𝒓𝟐)                                                                               ------(3) 

https://en.wikipedia.org/wiki/Event_horizon
https://en.wikipedia.org/wiki/Black_hole
https://en.wikipedia.org/wiki/Neutron_star
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Now we compute Bekenstein-Hawking temperature from the above metric easily as 

follows: 

                                 𝑻𝑯 =
𝒇′(𝐫)

𝟒𝛑
                                                                         -----(4) 

At r=𝒓+, we get the temperature of Schwarzschild black hole as 

                                   T=
𝟏

𝟒𝝅𝒓+
 

The Bekenstein–Hawking formula suggests that the microstates are localized on the 

event horizon. 

(ii) RADIUS 

 

The radius of Schwarzschild black hole was accurately derived by Karl 

Schwarzschild. 

Escape velocity for an object of mass M and radius R is given by 

                                        Ve =√
𝟐𝑮𝑴

𝑹
                                          --------------(1) 

According to Newton’s Second law of motion, 

                                        F=ma                                                                 ----------(2) 

The force of attraction existing between masses m and M is the force due to gravity 

and thus, we get, 

                                        
𝑮𝑴𝒎

𝒓𝟐 = 𝒎𝒂                                                          ----------(3) 

Therefore,             

                                         a=
𝑮𝑴

𝒓𝟐                                                               -------------(4) 

Or   

                                        g=
𝑮𝑴

𝒓𝒔
𝟐                                                                    ----------(5) 

Considering PE=KE, we get  
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                                       mgh=
𝟏

𝟐
𝒎𝑽𝟐                                         ---------------------(6) 

Or 

                                      𝑽𝟐 = 𝟐𝒈𝒉                                                                 ------(7) 

For a black hole, V=c                                                     

Therefore,                  

                                  𝒄𝟐 = 𝟐𝒈𝒉 =
𝟐𝑮𝑴

𝒓𝒔
𝟐                                               ----------------(8) 

Therefore, Schwarzschild radius is,  

                                       𝒓𝒔 =
𝟐𝑮𝑴

𝒄𝟐                

(iii) ENTROPY 

 

Formula for Bekenstein-hawking entropy is given by: 

                                      S=
𝑨

𝟒𝒍𝒑
𝟐 , where A is the area of event horizon and 

                                                            𝑙𝑝 𝑖𝑠  the Planck length given by 

𝒍𝒑 = √
ℏ𝐆

𝐜𝟑
 

                                                   Or,   𝒍𝒑
𝟐 =

ℏ𝑮

𝒄𝟑 =
𝒉𝑮

𝟐𝝅𝒄𝟑 

The surface area is given by, 

                                                       A=4𝝅𝑹𝒃𝒉
𝟐  

                                                          =4𝝅 ×
𝟒𝑮𝟐𝑴𝟐

𝒄𝟒  

                                                          =16𝝅
𝑮𝟐𝑴𝟐

𝒄𝟒                                               -----(1) 

The Bekenstein-Hawking entropy is given by: 
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                                                            S=
𝑨

𝟒𝒍𝒑
𝟐                                                     -----(2) 

                                                               =

𝟏𝟔𝝅𝑮𝟐𝑴𝟐

𝒄𝟒

𝟒𝒉𝑮

𝟐𝝅𝒄𝟑

 

                                                               =
𝟏𝟔𝝅𝑮𝟐𝑴𝟐

𝒄𝟒 ×
𝝅𝒄𝟑

𝟐𝒉𝑮
                                ------(3) 

Therefore, we get the entropy, S, of the black hole as: 

                                                         S =
𝟖𝝅𝟐𝑮𝑴𝟐

𝒉𝒄
 

 

The Bekenstein-Hawking entropy or black hole entropy is the amount of entropy  that 

must be assigned to a blackhole in order for it to comply with the laws of 

thermodynamics as they are interpreted by observers external to that black hole. This 

is particularly true for the first and second laws. 

 

(iv) MASS 

 

The mass of the black hole can be taken as having an empirical value equal to twice 

the product of temperature and entropy, i.e. 

                                                           M=2TS                                          ----------(1) 

The temperature and entropy was respectively found to be: 

                                                          T=
𝟏

𝟒𝝅𝒓+
              S =

𝟖𝝅𝟐𝑮𝑴𝟐

𝒉𝒄
 

Sub. The values in (1), we get: 

                                                         M=2×
𝟏

𝟒𝝅𝒓+
×

𝟖𝝅𝟐𝑮𝑴𝟐

𝒉𝒄
 

                                                            =
𝟒𝝅𝑮𝑴𝟐

𝒓+𝒉𝒄
                                          -----------(2) 

  Therefore, mass, M, is found to be  
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                                                      M=
𝒓+𝒉𝒄

𝟒𝝅𝑮
 =

𝒓+

𝟐
 

 

(v) GIBBS FREE ENERGY 

The general equation for Gibb’s free energy of a black hole is given by: 

                                                    G=E-TS-𝚽𝑯𝑸,                                             ------(1)             

                                                         Where, E can be approximated to the ADM                                                       

mass M of the black hole,  

                                                                              T is the temperature,  

                                                                              S, the entropy,  

                                                                           Φ𝐻, the electrostatic potential at                                 

horizon  

                                                                             Q, the charge of the black hole 

Hence, 

                                                         E=M                                                    ------(2) 

 For Schwarzschild black hole,  

                                                        TS=
𝑴

𝟐
                                                  ------(3) 

 

                                                              𝚽𝑯 =
𝑸

𝒓+
                                               ------(4) 

Therefore, the Gibbs free energy can be calculated as: 

                                                     G=M-
𝑴

𝟐
−

𝑸𝟐

𝒓+
                                          ------(5) 

For uncharged black hole, Q=0     

Hence, we get             

                                                    G=
𝑴

𝟐
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                                                      =

𝒓+
𝟐

𝟐
 

                                                      =
𝒓+

𝟒
                                                         --------(6) 

Therefore, we obtain the Gibbs free energy as: 

                                                   G=
𝒓+

𝟒
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CHAPTER 4 

THERMODYNAMICS OF SCHWARZSCHILD-AdS BLACK HOLE  

 

Anti-De Sitter spacetime is a crucial ingredient and provides relation between 

quantum field theory and a higher-dimensional gravity theory. It provides a solution 

of vacuum Einstein equations in the presence of a negative cosmological constant. 

The Schwarzschild black hole case offers the possibility to discuss singularities, 

horizons and boundaries in a simple but non trivial way. It is also interesting to study 

Schwarzschild black hole in anti-De Sitter space time and its universal covering. Here 

four dimensional Schwarzschild anti-De Sitter black hole is considered where the 

mass M of the black hole and the curvature radius of the embedding anti-De Sitter. 

In this chapter we consider Schwarzschild-Ads blackhole and derived various 

thermodynamic quantities. 

The solution of the Einstein field equation with the negative cosmological constant 

is given by: 

   d𝒔𝟐 = −(𝟏 −
𝟐𝑴(𝒓)

𝒓
+

𝒓𝟐

𝒍𝟐) d𝒕𝟐 + (𝟏 −
𝟐𝑴(𝒓)

𝒓
+

𝒓𝟐

𝒍𝟐 )−𝟏𝒅𝒕𝟐 + 𝒓𝟐(𝒅𝜽𝟐 + 𝒔𝒊𝒏𝟐𝜽𝒅𝝓𝟐) 

The Metric function is given by: 

                                           f(r)= 𝟏 −
𝟐𝑴(𝒓)

𝒓
+

𝒓𝟐

𝒍𝟐                                             --------(1) 

 

(i) MASS: 

 

Mass of Schwarzschild-AdS black hole is obtained by setting  f(r)=0 

                          𝟏 −
𝟐𝑴

𝒓
+

𝒓𝟐

𝒍𝟐 = 𝟎                                             ---(2) 

                                                                      
𝟐𝑴

𝒓
= 𝟏 +

𝒓𝟐

𝒍𝟐  

                                                                            = 
𝒍𝟐+𝒓𝟐

𝒍𝟐  
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                                                                         M=
𝒓(𝒍𝟐+𝒓𝟐)

𝟐𝒍𝟐                                  ----(3) 

Sub. r=𝒓+, we get mass, M, as 

                                                                        M=
𝒓+

𝟐
(𝟏 +

𝒓+
𝟐

𝒍𝟐 ) 

 

(ii) TEMPERATURE 

 

The Metric function is given by: 

                                                   f(r)= 𝟏 −
𝟐𝑴(𝒓)

𝒓
+

𝒓𝟐

𝒍𝟐                                        -----(1) 

Derivative of the metric function yields: 

                                                 f’(r)=
𝟐𝑴

𝒓𝟐 +
𝟐𝒓

𝒍𝟐                                                    ------(2) 

Bekenstein-hawking temperature, 

                                                          𝑻𝑯 =
𝒇′(𝐫)

𝟒𝝅
                                                                                                 

                                                         𝑻𝑯 =
𝟐𝑴𝒍𝟐+𝟐𝒓𝟑

𝟒𝝅𝒓𝟐𝒍𝟐                                               -------(3) 

 

We know,  

                                                         M=
𝒓+

𝟐
(𝟏 +

𝒓+
𝟐

𝒍𝟐 )                                         -----(4) 

Substituting, M=
𝒓(𝒍𝟐+𝒓𝟐)

𝟐𝒍𝟐 , we get 

                                                    𝑻𝑯 =
𝟐[

𝒓(𝒍𝟐+𝒓𝟐

𝟐𝒍𝟐 ]𝒍𝟐+𝟐𝒓𝟑

𝟒𝝅(𝒓𝟐𝒍𝟐)
                               ----------(5)                                                  

                                                           =
𝒓𝒍𝟐+𝒓𝟑+𝟐𝒓𝟑

𝟒𝝅𝒓𝟐𝒍𝟐                                      -----------(6) 

                                                           =
𝒓𝒍𝟐+𝟑𝒓𝟑

𝟒𝝅𝒓𝟐𝒍𝟐                                              ---------(7) 
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                                                           =
𝒓(𝒍𝟐+𝟑𝒓𝟐)

𝟒𝝅𝒓𝟐𝒍𝟐                                           ---------(8) 

                                                    𝑻𝑯  =
𝒍𝟐+𝟑𝒓𝟐

𝟒𝝅𝒓𝒍𝟐  

            

(iii) RADIUS 

Radius is obtained by setting  f(r)=0                  

                                               f(r)= 𝟏 −
𝟐𝑴(𝒓)

𝒓
+

𝒓𝟐

𝒍𝟐                                          ----(1) 

  

                                                  𝟏 −
𝟐𝑴(𝒓)

𝒓
+

𝒓𝟐

𝒍𝟐=0                                          -----(2) 

                                               r=
𝟐𝑴+√𝟒𝑴𝟐− 

𝟒

𝒍𝟐

𝟐

𝒍𝟐

                                                -----(3) 

                                                =
𝟐𝑴+√𝟒𝑴𝟐𝒍𝟐−𝟒

𝒍𝟐

𝟐

𝒍𝟐

                                                 ------(4) 

                                                 =

𝟐𝑴𝒍+√𝟒𝑴𝟐𝒍𝟐−𝟒

𝒍
𝟐

𝒍𝟐

                                                 -----(5) 

                                                 =
(𝟐𝑴𝒍+√𝟒𝑴𝟐𝒍𝟐−𝟒)𝒍

𝟐
                                          ------(6) 

                                                 =
(𝟐𝑴𝒍+𝟐√(𝒎𝒍)𝟐−𝟏) 𝒍

𝟐
                                        -------(7) 

                                                 =
𝟐𝑴𝒍𝟐

𝟐
+

𝟐𝒍√(𝒎𝒍)𝟐−𝟏

𝟐
                                       -------(8) 

                                                  𝒓+=m𝒍𝟐 + 𝒍√(𝒎𝒍)𝟐 − 𝟏 

(iv) ENTROPY: 

Entropy of the black hole is proportional to the area of its event horizon. Detailed 

analysis by Hawking showed that entropy is given by: 
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                                                       S=
𝑨

𝟒𝒍𝒑
𝟐 , where A is the area of event horizon and 

                                                                             𝑙𝑝 𝑖𝑠  the Planck length            ---(1)       

The surface area of the black hole is given by 

                                                      A=4𝝅𝒓+
𝟐                                                          ---(2) 

Considering Schwarzschild-AdS black hole to be of minimum length 

i.e. , 𝒍𝒑 = 𝟏 

Therefore,         

                                                      S=
𝟒𝝅𝒓+

𝟐

𝟒∗𝟏
                                                            ---(3) 

Hence, entropy  

                                                     S= 𝝅𝒓+
𝟐  

(v) GIBBS FREE ENERGY: 

The general equation for Gibb’s free energy of a black hole is given by: 

                                                    G=E-TS-𝚽𝑯𝑸,                                             ------(1)             

                                                         Where, E can be approximated to the ADM                                                       

mass M of the black hole,  

                                                                              T is the temperature,  

                                                                              S, the entropy,  

                                                                           Φ𝐻, the electrostatic potential at                                 

horizon  

                                                                             Q, the charge of the black hole 

Hence, 

                                                         E=M                                                    ------(2) 

 For Schwarzschild black hole,  

                                                        TS=
𝑴

𝟐
                                                  ------(3) 
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                                                              𝚽𝑯 =
𝑸

𝒓+
                                               ------(4) 

Therefore, the Gibbs free energy can be calculated as: 

                                                     G=M-
𝑴

𝟐
−

𝑸𝟐

𝒓+
                                          ------(5) 

For uncharged black hole, Q=0        G=
𝑴

𝟐
                                                  ------(6) 

                                                             =

𝒓+
𝟐

(𝟏+
𝒓+

𝟐

𝒍𝟐 )

𝟐
   

                                                          G  =
𝒓+

𝟒
(𝟏 +

𝒓+
𝟐

𝒍𝟐
) 
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CHAPTER 5 

                                     

                                      COMPARISON AND INFERENCE 

 

PARAMETERS SCHWARZCHILD SCHWARZCHILD 

ADS 

TEMPERATURE T=
𝟏

𝟒𝝅𝒓+
 𝑻𝑯 =

𝒍𝟐 + 𝟑𝒓𝟐

𝟒𝝅𝒓𝒍𝟐
 

RADIUS 
𝐫𝐬 =

𝟐𝐆𝐌

𝐜𝟐
 

𝒓+=m𝒍𝟐 +

𝒍√(𝒎𝒍)𝟐 − 𝟏 
 

ENTROPY 
S =

𝟖𝝅𝟐𝑮𝑴𝟐

𝒉𝒄
 

 

S= 𝝅𝒓+
𝟐  

 

MASS M=
𝒓+𝒉𝒄

𝟒𝝅𝑮
 =

𝒓+

𝟐
 M=

𝒓+

𝟐
(𝟏 +

𝒓+
𝟐

𝒍𝟐 ) 

 

GIBBS FREE ENERGY G=
𝒓+

𝟒
 

 

G  =
𝒓+

𝟒
(𝟏 +

𝒓+
𝟐

𝒍𝟐 ) 

 

 

The Einstein equations with a negative cosmological constant admit black hole 

solutions which are asymptotic to anti-de Sitter space. Like black holes in 

asymptotically flat space, these solutions have thermodynamic properties including a 

characteristic temperature and an intrinsic entropy equal to one quarter of the area of 

the event horizon in Planck units. There are however some important differences 

from the asymptotically flat case. A black hole in anti-de Sitter space has a minimum 

temperature which occurs when its size is of the order of the characteristic radius of 

the anti-de Sitter space. For larger black holes the red-shifted temperature measured 

at infinity is greater. This means that such black holes have positive specific heat and 

can be in stable equilibrium with thermal radiation at a fixed temperature.  
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All parameters of the Schwarzschild-AdS black holes was found to depend on the 

length and radius of  AdS space Unlike, Schwarzschild black hole, whose 

thermodynamic properties were found to depend only on the horizon radius.  

Both black holes have was found to have positive values of Gibbs free energy which 

indicated the phase transitions. 

All parameters of Schwarzschild-AdS black holes tend to minimum if the length is 

considered to be a minimum. 
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                              CONCLUSION AND  FUTURE SCOPE  

 

In this project we focused on how the laws of thermodynamics changes with the 

existence of black hole event horizon.We study the thermodynamics of 

Schwarzschild black hole and derive the thermodynamic properties of Schwarzschild 

black holes in ADS space. Different thermodynamics properties such as Entropy, 

temperature, Gibbs free energy etc. are calculated and a comparative study of both 

systems is carried out. 

 

As a further investigation, one can also consider the micro canonical ensemble. One 

can avoid the problem that arises in asymptotically flat space of having to put the 

system in a box with unphysical perfectly reflecting walls because the gravitational 

potential of anti-de Sitter space acts as a box of finite volume. It also implies that the 

canonical ensemble exists for asymptotically anti-de Sitter space, unlike the case for 

asymptotically flat space. 

Later, the Hawking-Page phase transition (i.e., a phase transition between the thermal 

anti-de Sitter (AdS) space and a black hole) can be studied in Schwarzschild-AdS 

black holes. Unlike Schwarzschild black holes, Schwarzschild-AdS black holes can 

be thermally stable since the AdS boundary acts as a reflecting wall for the Hawking 

radiation. 
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