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ABSTRACT 

Black holes are the astronomical objects which are the direct result of Einstein’s 

General theory of relativity. Study on the thermodynamic quantities of 

Blackholes is one of the major ongoing research theme. In order to extract various 

thermodynamic quantities for our study, we investigated the fundamental 

thermodynamic laws of blackholes. We have also demonstrated how these 

numbers change depending on the horizon radius. We examined the properties of 

Schwarzschild and Kerr blackholes. 
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CHAPTER 1 

Introduction 
 

The explanation for the idea of black hole begins when Albert Einstein developed his own 

theory of relativity known as “General Theory of Relativity” in the year 1915. Actually, the 

idea of black hole was introduced earlier in 17’s by John Michel, he presented a paper to the 

Royal Society of London suggesting that when a star got big enough that it is five hundred 

times wider than our sun, then the gravitational pull will be so strong that the light emitting 

from such a body is made to return towards it by its own proper gravity. Fifteen years later a 

French Mathematician Pierre-Simon de Laplace arrived at the same conclusion. But it was 

the general relativity that explained a genuine Black Hole. General relativity was based on a 

coincidence that Einstein was struck by, that for an inertial mass of a body that its resistance 

to a change in its motion is identical to gravitational mass (its change in motion due to gravity 

force), then he developed ‘Special Theory of Relativity’ which formalises the structure of 

space and time, which states that space and time are relative and all motion must be relative 

to a frame of reference. General Relativity brings out the concept of curved space and time. 

Even though General Relativity was based on the Newtonian Laws, both theories have 

different concept. According to Newton, gravity is force acting between masses, space was 

infinite and flat and time was infinite and smooth and never changed. But according to 

Einstein, space and time exist absolutely, but are not independent, they are interwoven into a 

single fabric called space-time, in 2-D analogy, we can imagine it like a surface of sheet 

being bent or distorted, space-time around the Earth by gravity of each massive rotating 

bodies, like the Earth warp and twist their local space-time. Something different happens 

when earth is spinning, which leads to a second effect which is the twisting of the space-time 

contours-‘like a whirlpool’ .Then comes physicalizing of the theories into black holes. 

“Any matter could become a Black hole, if you could crush it beyond its Schwarzschild 

radius.” 

If we could crush the sun into the size of a small town, earth into the size of a peanut or a 

rock into the size of a proton , everything will resembles a black hole. It would have an 
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escape velocity that was the speed of light and nothing could escape, because light is the 

fastest thing ever exists. 

Black hole is the kind of object left behind when a massive star dies. But not in the case of 

sun, because when a sun dies, it loses its outer envelope, then its 2/3 of mass that remains will 

crunch down to form a white dwarf, which is a cooling, carbon-rich ember, which is 

incredibly dense, millions of time denser than the sun now, but formally not the density of a 

black hole. But a star that started its life 10 times the mass of the sun will lose some mass 

along the way and then its core, when all fusion steps, there’s no energy from fusion gravity 

will win, and so the inexorable victory of gravity in a massive star in theory leads to a black 

hole because there is no force to resist compression to that dense state. 

The theory or calculations about a black hole is made from Einstein’s theory on general 

relativity. The actual calculations emerged from mostly Robert Oppenheimer and Hans Bethe 

in the 1930s. And it was essentially a by-product of Oppenheimer’s work on the Manhattan 

Project, figuring out Super dense states of matter, that are how we generated bombs and 

fusion. He used the same calculations to show that logically a massive star would have no 

force that could resist it turning into a black hole. Thus death of a massive star forms a black 

hole. 

 

                                    

Low to Average                                                                                                 white Dwarf 

Mass star 

 

 

 

 

 

Large Mass star                                                                                                  Neutron star 

 

 

 

 

Very Large Mass star                                                                                          Black Hole 



3 
 

 

When a massive star exhausts its fuel if the core is more than three times the sun’s mass no 

force can resist the contraction.  

It was in 1916, Karl Schwarzschild a German physicist, provide the first exact solution 

to Einstein's field equations of general relativity which was proposed in 1915. 

Schwarzschild’s solution is identified as a radius for any given mass, known as the 

Schwarzschild radius, where, if that mass could be compressed to fit within that radius, no 

known force or degeneracy pressure could stop it from continuing to collapse into 

a gravitational singularity or black hole. Thus, where the radius of the body is less than its 

Schwarzschild radius, everything, even photons of light, must inevitably fall into the central 

body. As a corollary, when the mass density of this central body exceeds a particular limit, it 

triggers a gravitational collapse to what is known as a Schwarzschild black hole, a non-

charged, non-rotating black hole. A general acceptance of the possibility of a black hole did 

not occur until the second half of the 20th Century, and Schwarzschild himself did not 

believe in the physical reality of black holes, believing his theoretical solution to be 

physically meaningless. 

In 1958, David Ritz Finkelstein showed that the horizons of black holes are not singular 

surfaces and determined that whatever falls past the Schwarzschild radius into a black hole 

cannot escape it. Thus he identified the surface area of Schwarzschild radius. 

Black holes in theory are incredibly simpler objects. They are characterized by an event 

horizon, which is not a physical boundary rather it is an information membrane. It is a 

boundary between the places of universe we can see and the part that is hidden from universe 

and that is nothing can escape from and we cannot see inside. It has a particular size that 

scale linearly varies with the mass of the object. When we look on to a black hole , according 

to General Theory of Relativity there is a cusp of density that’s infinite at the centre and 

that’s called as the Singularity, which is a problem anytime in physics when we get an 

infinity coming out, we are restricted of getting any information. 

In 1963, Roy Kerr solved the gravitational field outside an uncharged rotating massive object, 

including a rotating black hole and discovered the Kerr geometry. 

The other property of a black hole is spin, because the stars that form black holes are 

spinning, as the collapse, they spin faster and angular momentum gets conserved. So we 

anticipated all black holes in the universe are spinning and probably very fast. So black holes 
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are very simple objects with mass, spin and angular momentum. Thus a  new theorem which 

came into existence known as no-hair theorem which states that a Stationary black holes can 

be completely described by only three parameter, which are mass, charge and angular 

momentum. 

For a long time, people have doubted for the existence of black holes, which was, on the 

discovery of gravitational waves abolished the doubts on the real existence of black holes. In 

2019, the first ever image of black hole and their surroundings which were observed by Event 

Horizon Telescope were published. In May 2022, astronomers have unveiled the first image 

of supermassive black hole at the centre of our own Milky Way galaxy. 

 

There were many theories and discoveries which enables studies of black hole alive. The one 

was of Stephen Hawking’s Prediction that black holes have another property beyond the three 

and the last property is temperature. Hawking saw that there was a very clever mechanism in 

physics and in lab. It’s known that spontaneously from the vacuum, from a pure vacuum of 

space, particle antiparticle pairs can appear and disappear. That’s allowed by Heisenberg’s 

Uncertainty Principle. If that happens near the event horizon of a black hole, there’s a finite 

chance that one member of the pair will be lost inside the black hole, the other will escape. 

Hawking’s contribution about black holes was in a different way. His singular contribution 

was the prediction that black holes have another property beyond the three and the last 

property is temperature. Virtual particles and antiparticles pairs are always being created 

from radiation, then turning into radiation. Hawking realized that one of a pair could pass into 

the event horizon, so black holes radiate and will eventually evaporate. 

 

And in the aggregate, that is a net loss of either mass and mass and energy, as we know are 

equivalent. And the radiation from the black hole is called Hawking Radiation. Because this 

is a very subtle phenomenon, it’s a very subtle temperature, Hawking Radiation for a black 

hole that’s a dead star is about a billionth of a kelvin. This is completely immeasurable in 

astronomy, and may never be measurable unfortunately. Black holes have a phenomenon of 

slowly losing mass known as Black hole evaporation; this is also a subtle effect. The black 

holes formed from the death of a star take 1068 years to fully evaporate by Hawking 

Radiation, which cannot be measured by astronomers ever.    

                                                  

These new studies have shown relation between gravity and thermodynamics. Hawking in 

one of his paper said that the area of event horizon might stay the same or increase with time 
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but it could never decrease always increases when satisfied by energy conditions and never 

decreased. Thus Bekenstein have clearly observed and said that black holes have entropy and 

this entropy is proportional to the area of event horizon. Then the four laws of black hole 

mechanics were given by Bardeen, Carter and Hawking, which had a huge similarity with the 

four laws of thermodynamics. They refrained from claiming is as the thermodynamic laws of 

black holes rather it as analogy with the conventional thermodynamics. Hawking thus 

revealed that the black holes can radiate when quantum effects are taken into consideration. 

At first hawking had disagreement with the findings of Bekenstein but later he claimed and 

fixed the proportionality constant of black hole entropy with the horizon area as ¼ in natural 

unit. 

 

The development of X-ray astronomy provided first evidence for the black hole. With the 

discovery of gravitational waves, which yet another prediction of Einstein’s theory of 

relativity have proved the existence of black hole. It shows that the black holes don’t always 

exist in isolation they sometimes occur in pairs orbiting around each other. At the time of two 

black holes orbiting each other, the gravitational interaction between them creates ripples in 

space-time, which is propagated outward as gravitational waves. 

 

The first observational evidence for black hole was emerged in 1972 , the Cygnus X-1, the 

binary star system produces the most brightest X-rays of universe since they 33 times the 

mass of sun. The matter is constantly stripped from the giant star and dragged into an 

accretion disk around the black hole. Later it was shown that the dark object has a solar mass 

of 21 which is concentrated into a very small space, which is nothing but a black hole. 

 

Till now we have a lots of indirect evidence for black holes , uncovering all the theories the 

first direct image of the supermassive black hole at the centre of active galaxy Meisser 87 

was observed by Event horizon Telescope and published in April 2019 , which was quite 

mesmerizing and breath taking.  
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1.1 General theory of relativity 

 
A generalized framework for the treatment of gravitation and reference frames that are 

susceptible to gravitational acceleration, the general theory of relativity was developed by 

physicist Albert Einstein in the early 20th century. It is a geometric explanation of how mass 

and energy affects the lengths of space-time. It also modifies or improves Newton's original 

classical theory of gravity. Because it is the weakest of the three forces of nature, the 

gravitational force is responsible for affecting large-scale phenomena like planets. He 

generalizes the special theory of relativity and refines newton’s law of universal gravitation 

which provides a unified description of gravity as a geometric property of space and time or 

four dimensional  space-time.  

According to general relativity, mass and energy cause an orthogonal curvature in three 

spatial dimensions through a fourth. The space-time curvature has an impact on all matter and 

energy, and gravity results from bodies travelling through this bending of space-time. Based 

on Einstein's general theory of relativity, cosmology and astrophysics predicted extraordinary 

natural phenomena including neutron stars, black holes, and gravitational waves. Since 

moving things must follow the shortest geodesic, light deflection near big objects like stars 

can reveal the consequences of bent space-time. The light will bend around the distorted 

space-time brought on by a large star since it is simply taking the quickest route along its 

course. Karl Schwarzschild, a German physicist, solved Einstein's equations for black holes 

near a single spherical mass, such as a planet or star, in 1916, not long after Einstein 

postulated general relativity. Schwarzschild's calculations showed how the curvature of 

space-time would vary around stars with the same mass but smaller and smaller sizes, or stars 

that were getting smaller and smaller. 

Particularly in regards to the passage of time, the geometry of space, the motion of bodies in 

free fall, and the propagation of light, general relativity's predictions diverge dramatically 

from those of classical physics. Examples of such differences include gravitational redshift, 

gravitational time dilation and the gravitational time delay. General relativity is the most 

straightforward explanation that is consistent with experimental facts, however unanswered 

questions remain. There are significant astrophysical applications for Einstein's theory. It 
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suggests that black holes are real. There is evidence that black holes release powerful 

radiations. The gravitational lensing phenomena, where several images of the same far-off 

astronomical object are visible in the sky, are caused by the bending of light by gravity. A 

direct measurement is what programs like LIGO are aiming for. General relativity also 

predicts the existence of gravitational waves, which have subsequently been measured 

indirectly. In addition; general relativity is the basis of current cosmological models of 

expanding universe. 

The alteration of lengths, masses, and time in the presence of a strong gravitational field is a 

result of general relativity. The addition of simultaneity relativity, kinematic and gravitational 

time dilation, length contraction, and space-time as a single entity of space and time . The 

study of elementary particles and their fundamental interactions were altered by relativity, 

which also brought about the nuclear era in physics.  

The two main postulates of the general theory of relativity are: 

1. Local physics is governed by general relativity's special theory. 

2. The principle of equivalence: There is no way to distinguish between gravity and 

acceleration.   
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1.2  Space time metric 

A metric used in relativity to define the geometric features of four-dimensional space-time 

(which relates physical three-dimensional space and time). A space-time metric is defined by 

an invariant quantity—the square of the four-dimensional interval—that determines the 

space-time connection (the square of the "distance") between two infinitesimally close 

events. Space-time diagrams can be used to depict relativistic phenomena, such as why do 

different observers view where and when events occur differently. 

 𝑑𝑠ଶ = ෍ ෍ 𝑔௜௞

ଷ

௞ୀ଴

𝑑𝑥௜𝑑𝑥௞

ଷ

௜ୀ଴

 (1.1) 

                                                                                                   

Where  𝑑𝑥ଵ, 𝑑𝑥ଶ, 𝑑𝑥ଷ  are differences in the spatial coordinates of the events. 

             𝑑𝑥଴ = 𝑐𝑑𝑡  (dt - time difference between events, c-speed of light) 

             𝑔௜௞ are the components of metric tensor. 

In general, the metric tensor obeys Einstein's general relativity equations, and the components 

gn are functions of the coordinates x1, x2, x3, and x0. The shape of these functions in the 

chosen frame of reference is determined by the masses existing in space-time. The metric 

tensor can be simplified to the form in the absence of significant masses. 

 𝑔ଵଵ = 𝑔ଶଶ = 𝑔ଷଷ = −1, 𝑔଴଴ = +1, 𝑔௜௞ = 0  (1.2) 

𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑘                                   

For a rectangular Cartesian coordinates; 

 𝑑𝑠ଶ = 𝑐ଶ𝑑𝑡 − 𝑑𝑥ଶ − 𝑑𝑦ଶ − 𝑑𝑧ଶ (1.3) 
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Such space time metric is a pseudo-Euclidean space (because of – sign 

preceding  𝑑𝑥ଶ, 𝑑𝑦ଶ𝑎𝑛𝑑 𝑑𝑧ଶ ); also called flat space. This metric has the advantage of being 

Lorentz-invariant, which means that observers in various inertial frames will all measure the 

same interval ds. 

If large masses are present, we can’t simplify the metric tensor, which means the space-time 

is curved and the 𝑔௜௞ components will define its curvature. The distribution of masses in 

space and their motion influence the degree of deviation of a space-time metric from a 

Euclidean metric. 

The space-time interval 𝑑𝑠ଶ can be positive, negative, or zero, unlike spatial intervals. 

 Positive: time-like intervals, events that are causally related. 

 Zero: light-like intervals, only something moving faster than the speed of light can 

link the events 

 Negative: space-like intervals, events that are not causally related. 
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1.3 Einstein’s field equations  

 

The equation was published by Albert Einstein in 1915 which is in the form tensor equation 

that relates the geometry of space-time to the distribution of matter within it. There are ten 

nonlinear partial differential equations of Einstein field extracted from Albert Einstein’s 

General Theory of Relativity. The EFE describes the basic interaction of gravitation.  

The Einstein’s field equations are written in the form: 

 𝐺ఓఔ + ∆𝑔ఓఔ = ĸ𝑇ఓఔ                                                                                 (1.4) 

Where 𝐺µఔ is the Einstein’s tensor, 𝑔µఔ is the metric tensor, 𝑇µఔ is the stress-energy tensor, Δ 

is the cosmological constant and ĸ is the Einstein’s gravitational constant.  

The Einstein tensor is defined as  

 𝐺µఔ=𝑅µఔ −
ଵ

ଶ
𝑅𝑔µఔ (1.5) 

 

Where  𝑅µఔ is the Ricci curvature tensor and R is the scalar curvature. This is a symmetric 

second-degree tensor that depends on only the metric tensor and its first and second 

derivative. 

The Einstein’s gravitational constant is defined as  

 ĸ =
8𝜋𝐺

𝑐ସ
 (1.6) 

 

Where G is the Newtonian constant of gravitation and c is the speed of light in vacuum. 

The Einstein’s field equation can also be written as  
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 𝑅µఔ-
ଵ

ଶ
𝑅𝑔µఔ + 𝛥𝑔µఔ=ĸ𝑇µఔ (1.7) 

 

The expression on the left represents the curvature of space-time and on the right is the stress-

energy momentum content of space-time. The Einstein’s Field Equation can be interpreted as 

a set of equations dictating how stress-energy momentum determines the curvature of space-

time. 
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1.4 Basic thermodynamics 

Thermodynamics is a collection of useful mathematical relations between quantities, every 

one of which is independently measurable. Though it fails to give microscopic explanation of 

macroscopic changes it can be used to quantify many unknowns. We can define 

thermodynamics as a branch of physics which describes the natural processes that includes 

energy change and laws governing these changes, thus change in temperature plays very 

important role in it. Thermodynamics deals with some very abstract quantities, and makes 

deductions using mathematical relations. 

Thermodynamics mainly deals with the transformation of heat into mechanical work and vice 

versa. With the passage of time, the scope of thermodynamics has increased into a vast 

domain. Thermodynamics deals with heat and its relationship to energy in one of its diverse 

forms, mechanical, electrical, magnet, chemical or any other. In the kinetic theory all the 

thermal phenomena are interpreted in terms of disorderly motions of atoms and molecules, 

but thermodynamics taken no account of atomic constitution of matter. Its deals with the 

gross characterisation of a system by means of some of its observable properties which are 

related to its internal state . 

Thermodynamics system: thermodynamics is all about the interior of a system, we can 

specify the system in terms of macroscopic quantities (large scale or bulk scale properties of 

matter, which have effects on the internal state). Thus, thermodynamic state of a system can 

be described completely by specifying any two of three quantities: pressure (P), volume (V), 

and the temperature (𝜃). These macroscopic quantities are called thermodynamic coordinates 

or state variables and for a given amount of substance forming the system they are not 

independent. 

The equation connecting these thermodynamics coordinates is called the equation of state and 

it takes the general form of  

 𝑓(𝑃, 𝑉, 𝜃) = 0  (1.8) 
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If the system consists of homogeneous mixture of several component systems, the 

concentrations of the different chemical components combining the mixture will be 

additional variables necessary to define the state of the composite system. 
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1.5 Black Holes 

Although it had originated from Einstein's general theory of relativity back in 1916, the idea 

of black holes has played a significant role in astronomy and astrophysics since 1950s. And 

now, 74 years later, the concept of black holes is important to both elementary particle 

physics and cosmology. Black holes are natural consequence of General Relativity which had 

made our understanding about space and time deeper. They can be treated as most powerful 

analytical tool to study macroscopic and microscopic properties of universe. An elementary 

definition of a black hole is a region of space-time in which the gravitational potential 

exceeds the square of the speed of light, 𝑐ଶ.Any astronomical body whose escape velocity 

exceeds the speed of light must be a black hole. The majority of modern astrophysicists 

contend that if a large star were to shrink up to its event horizon, it would then instantly 

collapse to a point mass, a mathematical object with zero volume and zero dimensions, which 

would be the singularity of the resulting black hole. 

The boundary of the black hole is Schwarzschild radius which completely depends on the 

black hole’s mass, which was found by Karl Schwarzschild, it is the physical radius in which 

any objects become a black hole. This is the radius of event horizon, and anything that passes 

the horizon radius travels much faster than light. There is no any reflection from the black 

region which is the event horizon. The hole or dark point comes from the singularity. This 

singularity is covered by event horizon.  

Schwarzschild radius is given as 

 r =  
2𝐺𝑀

𝐶ଶ
 (1.9) 

 

1.5.1 No – hair theorem 

The no-hair theorem states that for stationary black hole solutions in general relativity can be 

completely characterized by only three independent externally observable classical 

parameters such as mass, electric charge and angular momentum. The variety of information 
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can be found from these parameters since every information disappears behind the event 

horizon. It was John Wheeler who said that ‘black holes have no hair’ from which the name 

of theorem originates. 

 

1.5.2 Classification of Black holes 

Based on the no-hair theorem black holes are classified as  

i. The static black hole having neither electric charge  nor angular momentum are 

defined by Schwarzschild solution. 

ii. The black hole having electric charge and no angular momentum are defined 

by Reissner- Nordström solutions. 

iii. The rotating black holes which no electric charge by Kerr solution. 

iv. The rotating black holes with both electric charge and angular momentum by 

Kerr-Newman solutions. 

 

 

 

i. Schwarzschild solution 

1n 1916, Karl Schwarzschild solved Einstein’s field equations of general 

relativity. He brings out the solution for gravitational field in empty space 

around a non-rotating spherically symmetric black hole. Its line element is 

defined as  

          𝑑𝑠ଶ = − ൬1 −
2𝑀

𝑟
൰ 𝑑𝑡ଶ + ൬1 −

2𝑀

𝑟
൰

ିଵ

𝑑𝑟ଶ + 𝑟ଶ(𝑑𝜃ଶ + 𝑠𝑖𝑛ଶ𝜃𝑑∅ଶ)      (1.10) 

   

 It exhibits a singularity at the Schwarzschild radius r= 2M, this is the 

boundary of no escape. 

 

ii. Reissner - Nordström Solution 

In 1916 and 1918, Reissner and Finnish independently solved the Einstein-

Maxwell field equations for charged spherically symmetric systems. Since 

black holes have formed from the collapse of stars they can have angular 
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momentum. The Reissner-Nordström geometry describes the geometry of 

empty space surrounding the charged black hole. Its line element is given by 

 

 
 𝑑𝑠ଶ = − ቆ1 −

2𝑀

𝑟
+

𝑄ଶ

𝑟ସ
ቇ 𝑑𝑡ଶ + ቆ1 −

2𝑀

𝑟
+

𝑄ଶ

𝑟ସ
ቇ

ିଵ

𝑑𝑟ଶ + 𝑟ଶ(𝑑𝜃ଶ   

+ 𝑠𝑖𝑛ଶ𝜃𝑑∅ଶ 

 (1.11) 

 

       

iii. Kerr Solution 

The solution for rotating uncharged axially symmetric black holes was put forward 

by Roy Kerr in 1963. These equations are highly non-linear, which makes exact 

solutions very difficult to find. Its line element is given by 

 
𝑑𝑠ଶ =

∆

𝜌ଶ
(𝑑𝑇 − ℎ𝑠𝑖𝑛ଶ𝜃𝑑∅)ଶ −

𝜌ଶ

∆
𝑑𝑅ଶ − 𝜌ଶ𝑑𝜃ଶ

−
𝑠𝑖𝑛ଶ𝜃

𝜌ଶ
[(𝑅ଶ + ℎଶ)𝑑∅ − ℎ𝑑𝑇]ଶ   

(1.12) 

 

 

                         Where ℎ =
௅

ெ
= 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑚𝑎𝑠𝑠 

                                                              ∆= 𝑅ଶ − 2𝐺𝑀𝑅 + ℎଶ         

𝜌ଶ = 𝑅ଶ + ℎଶ𝑐𝑜𝑠ଶ 

 

iv. Kerr -Newman Solution 

They are natural extension to a charged rotating black holes in which the 

metric is asymptotically flat and have stationary solution of Einstein’s Field 

equations. Its line element is given  



17 
 

 
𝑑𝑠ଶ =

∆

𝜌ଶ
(𝑑𝑇 − ℎ𝑠𝑖𝑛ଶ𝜃𝑑∅)ଶ −

𝜌ଶ

∆
𝑑𝑅ଶ − 𝜌ଶ𝑑𝜃ଶ

−
𝑠𝑖𝑛ଶ𝜃

𝜌ଶ
[(𝑅ଶ + ℎଶ)𝑑∅ − ℎ𝑑𝑇]ଶ 

(1.13) 

                        Where 

                                                      ∆= 𝑅ଶ − 2𝐺𝑀𝑅 + ℎଶ + 𝐺𝑄ଶ 

𝜌ଶ = 𝑅ଶ + ℎଶ𝑐𝑜𝑠ଶ𝜃 
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1.6 Thermodynamics of black hole 

 

A black hole is characterized only through its mass, its angular momentum and net charges 

upon it. Other than these three, no single information can be obtained from a black hole. That 

is what no hair theorem states. A black hole is a monster devouring another star coming in the 

vicinity of it. Each time black hole swallows up another star, its area increases represented by 

the growing radius of photon sphere around the event horizon. 

Jacob Bekenstein, the father of black hole thermodynamics, showed the similarity between 

increasing area of the black hole and increasing entropy according to the second law of 

Thermodynamics. He postulated that the event horizon of the black hole was the 

measurement of the entropy of the black hole. More the area of the black hole the more will 

be the entropy. Any matter falling into the black hole, increase the area of the event horizon, 

thus increasing the entropy.  Hence entropy outside the black hole will certainly diminish but 

overall entropy of the universe will increase subsequently. 

Second law of thermodynamics shows that entropy is a function of temperature. Entropy is 

inversely proportional to the temperature but this relation must imply that for black holes to 

have entropy they must possess temperature. And if black holes have temperature, then as a 

black body, it must emit radiation in some form.  

It was in 1971, Stephan Hawking proposed the area theorem, which suggests that the total 

area of the black hole’s event horizons should never shrink; which was parallel to the second 

laws of thermodynamics that states “the entropy within an object never decrease”. In 1974 

based on the similarities between these two laws, it was suggested that black holes do emit 

radiation just like any black body and that depends upon the mass of the black hole. Bigger 

the mass of the black hole, lower will be the temperature and thus it will emit radiation. A 

smaller black hole will have more temperature and thus emit radiation at greater speed to 

achieve equilibrium. This radiation was named after Stephan Hawking as the Hawking’s 

Radiation.  
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There exists a close relationship between thermodynamical parameters and black hole 

parameters, like the internal energy E to mass m of the black hole, temperature T to surface 

gravity ĸ of the event horizon and the entropy S to the area A of the event horizon. 

Based on all these studies, the properties of black holes have been classified into four laws 

called the laws of Black hole Thermodynamics. 

They are: 

 

1. Zeroth law: Its states that a simple, non-rotating black hole has uniform surface 

gravity at its event horizon. 

This is kind of like saying that such a black hole is at thermal equilibrium. 

If area A of the event horizon plays the role of entropy, then surface gravity ĸ plays 

the role of temperature (ĸdA~TdS).the surface gravity is always constant over the 

event horizon of a stationary. this law is analogous to zeroth law of thermodynamics 

which states that the temperature is uniform everywhere in a system in thermal 

equilibrium.  

The significance of the quantity ĸ lines in the fact that it determines the e-folding time 

which controls the rate at which the collapsing star red shifts and approaches 

equilibrium. For a Schwarzschild 𝜅 = (4𝑀)ିଵ. 

 

2. First law: When a little quantity of mass dm is added to a black hole that is going 

through a quasi-static process, entropy term in first law is dm=ĸdA/8πG; expression 

to the first law as it express mass-energy conservation. 

 

3. Second law: Gravity causes systems to expand rather than contract. In the case of 

black holes, objects can enter them but cannot exit them, making them larger. Similar 

to the second law of thermodynamics, the size of a black hole is like the entropy; it 

keeps growing. 

 

 

4. Third law: According to the cosmic censorship hypothesis, the surface gravity of the 

horizon cannot be zero (=0), i.e., it cannot be decreased to zero in a limited number of 

steps; which is the third law. 
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Analogous with Thermodynamics 

 

Law 
In ordinary 

thermodynamics 
In black hole 

thermodynamics 

Zeroth law 
Temperature is uniform in a 
thermodynamic system in 

equilibrium 

Surface gravity throughout 
the event horizon is uniform 

First law dE= TdS + work terms dm=
ĸ

଼గீ
𝑑𝐴+ work terms 

Second law dS≥ 0 𝑑𝐴 ≥ 0 

Third law 

T=0 

Cannot be achieved within a 
finite number of cycles 

ĸ=0 

Cannot be achieved within a 
finite number of cycles 
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CHAPTER 2 

Schwarzschild Black Hole 

 

The Schwarzschild metric, also referred to as the Schwarzschild solution, is an exact solution 

to the Einstein field equations that describes the gravitational field outside a spherical mass 

on assuming that the electric charge, mass, angular momentum, and universal cosmological 

constant are all equal to zero. It is a part of Einstein's theory of general relativity. For 

describing slowly rotating astronomical objects, such as numerous stars and planets, 

including Earth and the Sun, the solution is a suitable approximation. Schwarzschild black 

hole was formed by Karl Schwarzschild in 1916, and for the first time solved the Einstein’s 

field equation.  

He also introduced Schwarzschild radial coordinate, which becomes zero at the 

Schwarzschild radius. The Schwarzschild solutions appears to have singularities at r=0 and 

r=𝑟௦. Schwarzschild coordinates are divided into two disconnected paths when the singularity 

is at r=𝑟௦; the exterior Schwarzschild solution for (r>𝑟௦) and the interior Schwarzschild 

solution(0 ≤ 𝑟 ≤ 𝑟௦). If the Schwarzschild solution taken is valid for all r>0, then it is called 

as a Schwarzschild black hole, thus it is just a point mass and the surrounding empty sphere 

of intense gravitation. 

A Schwarzschild black hole( a static black hole) that lacks both electric charge and angular 

momentum. The Schwarzschild metric describes a Schwarzschild black hole, and it can only 

be identified from other black holes by its mass. The Schwarzschild black hole consists of a 

spherical barrier known as the event horizon, which is located at the Schwarzschild radius, 

also known as the radius of a black hole. A Schwarzschild black hole is a Schwarzschild 

solution that is assumed to be valid for all r > 0. It is a totally a valid solution to Einstein's 

field equations, despite having quite strange features. The Schwarzschild radial coordinate r 

becomes time like for r<𝑟௦, while the time coordinate t becomes spacelike. The surface r =𝑟௦ 

defines what is known as the black hole's event horizon. It denotes the point beyond which 
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light cannot escape the gravitational field. Any physical object with a radius R less than or 

equal to the Schwarzschild radius has gravitationally collapsed and become a black hole. 

 

A Schwarzschild black hole has three distinct characteristics: 

• A photon sphere that is 1.5 times the size of the Schwarzschild radius 

• An event horizon: basically, the black hole's outer surface; its distance from the singularity 

is the Schwarzschild radius. 

 • A point singularity with infinite curvature of space and time. 

 

Schwarzschild metric and radius: 

A Schwarzschild black hole is static black hole, which has no electric charge or angular 

momentum.  

For spherically symmetric and static body of radius R and mass M, general metric is 

represented as 

d𝑠ଶ = ∑ 𝑔ஜ஥𝑑𝑥ఓ𝑑𝑥ఔ
ఓజ = 𝑈(𝑟)𝑑𝑡ଶ − 𝑉(𝑟)𝑑𝑟ଶ − 𝑟ଶ𝑑𝜃ଶ − 𝑟ଶ𝑠𝑖𝑛ଶ𝜃𝑑𝜙ଶ                  (2.1) 

where the metric components are 

𝑔଴଴ = 𝑈,      𝑔ଵଵ = −𝑉,      𝑔ଶଶ = −𝑟ଶ,    𝑔ଷଷ = −𝑟ଶ𝑠𝑖𝑛ଶ𝜃                                          (2.2) 

We have Einstein’s Field equation as, 

𝑅ఓఔ −
ଵ

ଶ
𝑅𝑔ఓఔ − Λ𝑔ఓఔ = −

଼గீ

௖ర
𝑇ఓఔ                                                                                      (2.3) 

As for Schwarzschild black hole it assumed that the cosmological constant Λ = 0 and also 

the stress-energy tensor vanish. 

Then, the Einstein’s field equation becomes, 

𝑅ఓఔ −
ଵ

ଶ
𝑅𝑔ఓఔ = 0                                                                                                          (2.4) 



23 
 

Substituting for    𝑉 =
ଵ

ଵି
಴

ೝ

        𝑈 = ቀ1 −
஼

௥
ቁ       𝑎𝑛𝑑   𝐶 =

ଶீெ

௖మ
 

 

We get the Schwarzschild metric as:  

 

𝐝𝒔𝟐 = (𝟏 −
𝟐𝑮𝑴

𝒄𝟐𝒓
)𝒄𝟐𝒅𝒕𝟐 −

𝟏

(𝟏 −
𝟐𝑮𝑴
𝒄𝟐𝒓

)
 𝒅𝒓𝟐 − 𝒓𝟐𝒅𝜽𝟐 − 𝒓𝟐𝒔𝒊𝒏𝟐𝜽𝒅𝝓𝟐 

 

(2.5) 

And the Schwarzschild radius is given as: 

 
𝒓𝒔 =

𝟐𝑮𝑴

𝒄𝟐
 

 

(2.6) 

Where G-gravitational constant, c-speed of light, M-mass of the body. 

 

 

 

 

 

 

 

 

 

 

 

 

                   Event horizon 
 
                                 
 
 
                                  Singularity 
 
 
 
 
 
 
 
 
 
Schwarzschild radius 
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CHAPTER 3 

Gibb’s Free Energy Of Schwarzschild Black Hole 

 

In this chapter we tried to find the Gibb’s free energy of a Schwarzschild Black hole. By 

calculating the Gibbs free energies, we can analyze  the ranges of horizon radii in which the 

black holes remain globally stable or prefer the radiation phase. 

The generalized form for the entropy of an evaporating Schwarzschild black hole in non-

commutative space is given as  

 
𝑆 ≅

𝐴

4
−

𝜋𝛼

2
ln

𝐴

4
+ ෍ 𝐶௡(

ஶ

௡ୀଵ

𝐴

4
)௡ + 𝐶 

(3.1) 

Where, 

                      
𝐶 ≅

𝐴௣

4
+

𝜋𝛼

2
ln

𝐴௣

4
− ෍ 𝐶௡(

ஶ

௡ୀଵ

4

𝐴௣
)௡  

(3.2) 

 

In the case of commutative space, 𝛼 = 0 and this equation yields the Standard Bekenstein 

entropy  

 
𝑆 ≅

𝐴

4
 

(3.3) 

 

For the spherically symmetric and stationary or Schwarzschild black hole, its surface area is 

naturally given by the following equation. 

 𝐴 = 4𝜋𝑅௕௛
ଶ  (3.4) 
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Where the radius of event horizon for non-spinning and spinning black holes are given by, 

 
𝑅௕௛ =

2𝐺𝑀

𝑐ଶ
 

(3.5) 

                     

And  

                      
𝑅௕௛ =

𝐺𝑀

𝑐ଶ
 

(3.6) 

 

The entropy of black holes(S) can be obtained by putting (4) into equation (3), 

 𝑆 = 𝜋𝑅௕௛
ଶ  

 

The above equation is differentiated as, 

 𝑑𝑆 = 2𝜋𝑅௕௛𝑑𝑅௕௛ 

 

Gibb’s free energy                                G=E-TS 

Bekenstein-Hawking formalism of black hole thermodynamics gives the following relation 

for temperature and entropy of black hole as, 

 
𝑇ு =

1

8𝜋𝑀
 

 

                  

And  𝑆 = 4𝜋𝑀ଶ 

 

                     

The product of temperature (T) and entropy (S) is; 

(3.7)

(3.8)

(3.9)

(3.10)
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𝑇𝑆 =

1

8𝜋𝑀
4𝜋𝑀ଶ 

 

                

   
𝑇𝑆 =

𝑀

2
 

According to Einstein well-known mass-energy equivalence relation, we know that 𝐸 = 𝑀𝑐ଶ 

Putting (12) in equation G=E-TS  

 
𝐺 = 𝑀𝑐ଶ −

𝑀

2
 

 

Putting c=1 throughout the research work 

We have, 

𝐺 = 𝑀 −
𝑀

2
 

                  

 
𝐺 =

𝑀

2
 

 

The change in free energy of a Schwarzschild black hole due to change in the mass of the 

black hole can be obtained by differentiating the above equation 

 
𝑑𝐺 =

1

2
𝑑𝑀 

 

First law of black hole thermodynamics gives the relation between change in mass, angular 
momentum J area A and electrical charge Q, 

𝑑𝑀 =   
κ𝑑𝐴

8𝜋𝐺
+  Ω 𝑑𝐽 +  Φ 𝑑𝑄 

For Schwarzschild hole angular momentum and electrical charge is 0; 

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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then  

                  
𝑑𝑀 =

𝜅𝑑𝐴

8𝜋𝐺
 

 

Using equation (3), we can rewrite equation (16) as, 

                   
𝛿𝑀 =

𝜅𝛿𝑆

2𝜋
 

 

Putting equation (8) in (17), 

  

𝛿𝑀 = 𝜅𝑅௕௛𝛿𝑅௕௛ 

 

  Substituting  𝛿𝑀 in equation (15) 

 𝛿𝐺 =
𝜅

2
𝑅௕௛𝛿𝑅௕௛ (3.19) 

 

This equation gives the change in Gibb’s free energy with corresponding change in the event 

horizon in the terms of surface gravity, mass, angular velocity and event horizon of spinning 

black holes. 

In case of spinning black holes, surface gravity of a black hole is given by the Kerr solution, 

 
𝜅 =

(𝑀ସ − 𝐽ு
ଶ )ଵ/ଶ

2𝑀{𝑀ଶ + (𝑀ସ − 𝐽ு
ଶ )

ଵ
ଶ}

 
(3.20) 

                         

 

Where  

𝐽ு = 𝑎∗
𝐺𝑀ଶ

𝑐
 

(3.16)

(3.17)

(3.18)
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Using G=c=h=1, 

 𝐽ு = 𝑎∗𝑀ଶ 

 

(3.21) 

In the case of spinning black hole having spin parameter (𝑎∗ = 1), 

                          

 

𝐽ு = 𝑀ଶ (3.22) 

Using (26) in (24), we have  

                          

 

𝜅 = 0 

 

(3.23) 

Equation (23) becomes, 

                         

 

𝒅𝑮 = 𝟎 (3.24) 

                                                                 G=constant 

 

From the above derivation it is seen that change in free energy is zero for a Schwarzschild 

Black hole. 

The determination of corrections to the semi-classical BH entropy is an important gradient 

that should be incorporated in any consistent quantum gravity theory. For a given 

thermodynamically stable system, thermal fluctuations generally lead to the following 

corrections for the entropy 
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CHAPTER 4 

Logarithmic Correction To The Entropy Of Schwarzschild 
Blackhole 

 

Let’s begin the discussion by writing metric for spherically symmetric Schwarzschild black 

hole with singularity at Schwarzschild radius, r = 2M. 

 
            𝑑𝑠ଶ = −(1 −

2𝑀

𝑟
)𝑑𝑡ଶ + ൬1 −

2𝑀

𝑟
൰

ିଵ

𝑑𝑟ଶ + 𝑟ଶ(𝑑ѳଶ + sinଶ ѳ𝑑 𝛷ଶ) 

 

This metric is of the form, 

 
𝑑𝑠ଶ = 𝑓(𝑟)𝑑𝑡ଶ +

𝑑𝑡ଶ

𝑓(𝑟)
+ 𝑟ଶ𝑑ѳଶ + 𝑟ଶ𝑠𝑖𝑛ଶѳ𝑑𝛷ଶ 

 

Where metric function is given by, 

 
𝑓(𝑟) = 1 −

2𝑀

𝑟
 

 

Now, we compute Bekenstein-Hawking temperature 

  

 𝑇ு =
𝑓ᇱ(𝑟)

4𝜋
   /(𝑟 = 𝑟ା) 

 

                                                                                         

(4.1)

(4.2)

(4.3)

(4.4)
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𝑓ᇱ(௥) =

2𝑀

𝑟ଶ
 

 

 

𝑇ு =

2𝑀
𝑟ଶ

4𝜋
=

𝑀

2𝜋𝑟ା
ଶ 

 

The value of event horizon radius 𝑟ା can be obtained by setting f(r) =0, 

 
𝑓(𝑟) = 1 −

2𝑀

𝑟
 

 

0 = 1 −
2𝑀

𝑟
 

i.e., 𝑟 = 2𝑀 

 

 

Whenever one goes over from the microscopic to the macroscopic and thermodynamical 

description of any system, the key role is played by the partition function, 

 Z(β) = ෍ 𝑔(𝐸௡)𝑒ିఉா೙

௡

 

 

Where n is the possible total energies 𝐸௡ of the system, β is the inverse temperature and 

g(𝐸௡) is the number of degenerate states of the system associated with the same total energy 

𝐸௡. 

In order to study the effect of thermal perturbations on the entropy of Schwarzschild black 

hole, we first derive the exact expression for the entropy of Schwarzschild black hole. 

In this regard, we write partition function as, 

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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Z(β) =  න 𝑑𝐸

ஶ

଴

ρ(E)𝑒ିఉா  

Where β=
ଵ

்ಹ
 as Boltzmann constant k=1 

Now, with the help of inverse Laplace transform, one can get density of states 

 
𝜌(𝐸) =

1

2𝜋𝑖
න 𝑑𝛽𝑧(𝛽)𝑒ఉா

ఉబା௜ஶ

ఉబି௜ஶ

 

 

 

         

 
=

1

2𝜋𝑖
න 𝑑𝛽𝑒௦(ఉ )

ఉା௜ஶ

ఉି௜ஶ

 

 

                                                                                                                    

Here s(β)=lnZ(β)+βE represents the exact entropy for the black hole and this depends on 

temperature explicitly. If one reduces the size of black hole and expands s(β) around 

equilibrium, then using the method of steepest descent (where 
ௗ௦

ௗఉ
= 0 𝑎𝑛𝑑 

ௗమ௦

ௗఉమ
> 0) )we get, 

 
S(β) = 𝑆଴ +

1

2
(𝛽 − 𝛽଴)ଶ

𝑑ଶ𝑠

𝑑𝛽ଶ 
     + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠     

 

Where 𝑆଴ represents the equilibrium value of entropy. 

 

By inserting (12) and (13), we have 

 

𝜌(𝐸) =
𝑒௦బ

2𝜋௜
∫ 𝑑𝛽𝑒

ଵ
ଶ

(ఉିఉబ)మௗమ௦

ௗఉమ  

On solving integral, we get, 

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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𝜌(𝐸) =

𝑒௦బ

ඨ2𝜋
𝑑ଶ𝑠
𝑑𝛽ଶ

 

Eventually this leads to, 

 
S = 𝑆଴ − ln(𝑆଴𝑇ு

ଶ)
ଵ
ଶ 

Or 

 
S = 𝑆଴ −

1

2
𝑙𝑛𝑆଴𝑇ு

ଶ 

 

Here, without loss of gravity, we may replace the ½ factor of second term by a more general 

correction parameter. this is because the coefficient of log term modifies when Hawking 

temperature has power-law dependence on the entropy of the system. Thus, the corrected 

entropy by incorporating small fluctuations around thermal equilibrium is given by,  

 S = 𝑆଴ − 𝛼 ln(𝑆଴𝑇ு
ଶ) 

                                                                                                             

Moreover, 2nd term appears due to small statistical fluctuations around the thermal 

equilibrium or we can say that it represents the leading-order corrections to entropy of Black 

hole. 

Now, by inserting the value of hawking temperature and Bekenstein entropy to the expression 

(18), we get perturbed expression for entropy of non-rotating Schwarzschild black hole as, 

 

 
𝐒 =

𝟒𝝅𝑮𝟐𝑴𝟐

𝒄𝟒
− 𝛂𝐥𝐧

𝑮𝟐𝑴𝟒

𝒄𝟒𝝅𝒓ା
𝟒

 

 

The above equation shows the correction in entropy when thermal fluctuations are 

incorporated, that is, for a stable thermodynamic system subjected under thermal 

fluctuations leads to the first order corrections. 

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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We have plotted a graph showing the variations of entropy with horizon radius. 

(Fig.4.1) and it was found that for increase in the horizon radius there is a 

corresponding increase in the entropy which satisfies area entropy law of the 

thermodynamics. 

 

  

   

 

 

 

 
                                                                                                                

 

 

 

 

 

 

 

 

Fig.4.1 Entropy v/s Horizon radius, taking G=M=1 for fluctuations α=1/2 
(blue line) and α=3/2(red line)  
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CHAPTER 5 

First Order Corrected Thermodynamic Quantities 

 

In this chapter, we would like to compute thermodynamical quantities by incorporating small 

fluctuations to the system of  Schwarzschild black hole. By knowing the expression of 

entropy and temperature, we can compute various other thermodynamical quantities. 

Helmholtz free energy (F) can be evaluated with the help of the following formula, 

 
𝐹 = − න 𝑆𝑑𝑇ு 

We know, 

𝑇ு =
𝑀

2𝜋𝑟ା
ଶ 

𝑀 = 𝑇ு2𝜋𝑟ା
ଶ 

And 

𝑆 =
4𝜋𝐺ଶ𝑀ଶ

𝑐ସ
− 𝛼 ln

𝐺ଶ𝑀ସ

𝑐ସ𝜋𝑟ା
ଶ 

 

Substituting M in S and using S in (1), 

We get  

 
𝐹 = − න

16𝜋ଷ𝐺ଶ𝑇ு
ଶ𝑟ା

ସ

𝑐ସ
− 𝛼 ln

16𝜋ଷ𝐺ଶ𝑇ு
ସ𝑟ା

ସ

𝑐ସ
. 𝑑𝑇ு 

(5.2) 

 

 
𝑭 = −

𝟏𝟔𝝅𝟑𝑮𝟐𝑻𝑯
𝟑 𝒓ା

𝟒

𝟑𝒄𝟒
+ 𝜶𝑻[𝐥𝐧(

𝟏𝟔𝝅𝟑𝑮𝟐𝑻𝑯
𝟒 𝒓ା

𝟒

𝒄𝟒
) − 𝟒] + 𝒄 

(5.3) 

(5.1)
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The behavior of Helmholtz free energy with respect to horizon radius can be seen from 

Fig.5.1 

 

 

 

Here we see that the free energy increases as when the horizon radius increases at first, and 

then it shows a constant behaviour. The plot shows a critical horizon in which free energy 

further never changes; this point can be interpreted as a phase transition region in which a 

classical black hole becomes a stable black hole. For larger blackholes (having horizon radius 

greater than critical horizon radius )have less negative free energy than its equilibrium values, 

while the smaller ones (having horizon radius less than critical horizon) have more negative 

free energy values. 

We have also studied the free energy v/s horizon radius plot for different α variations, that is 

incorporating different values of fluctuations. 

Fig.5.1 Free energy v/s black hole horizon radius taking G=M=1, fluctuations are taken as zero 

(α=0) 
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Here we see that, the Helmholtz free energy shows a decreasing behavior with increasing 

behavior with horizon. When the α value is taken as zero , we could see that the free energy 

approaches zero value , when we apply fluctuations the larger blackholes show more 

variation than smaller ones. 

 

 

The first law of thermodynamics for uncharged stationary Schwarzschild black hole reads 

 𝑑𝐸 = 𝑇ு𝑑𝑆 

 

Which upon integration yields the energy 

 
𝐸 = න 𝑇ு 𝑑𝑆 

 

 We know that,  

Fig.5.2 Free energy v/s black hole horizon radius taking G=M=1, fluctuations are taken for 

different α values,α=0(blue line), α=1/2(red line), α=3/2(yellow line) 

(5.4)

(5.5)
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𝑇ு =

𝑀

2𝜋𝑟ା
ଶ 

 

From S, we obtain  

 

𝑀 =
𝑐ଶ

(4𝜋)
ଵ
ଶ𝐺

ቐ𝑆
ଵ
ଶ + 𝛼

ଵ
ଶ ቈln ቆ

𝐺ଶ𝑀ସ

𝑐ସ𝜋𝑟ା
ସቇ቉

ଵ
ଶ

ቑ 

 

Substituting M in 𝑇ு, 

 

𝑇ு =
𝑐ଶ

(4𝜋)
ଵ
ଶ𝐺(2𝜋𝑟ା

ଶ)
ቐ𝑆

ଵ
ଶ + 𝛼

ଵ
ଶ ቈln ቆ

𝐺ଶ𝑀ସ

𝑐ସ𝜋𝑟ା
ସቇ቉

ଵ
ଶ

ቑ 

 

  

𝐸 =
𝑐ଶ

(4𝜋)
ଵ
ଶ𝐺(2𝜋𝑟ା

ଶ)
ቐ𝑆

ଵ
ଶ + 𝛼

ଵ
ଶ ቈln ቆ

𝐺ଶ𝑀ସ

𝑐ସ𝜋𝑟ା
ସቇ቉

ଵ
ଶ

ቑ . 𝑑𝑆 

 

 

 

 

 

 

 

𝑬 =
𝒄𝟐

(𝟒𝝅)
𝟏
𝟐𝑮(𝟐𝝅𝒓ା

𝟐 )

ቐ
𝟐𝑺

𝟑
𝟐

𝟑
+ 𝑺𝜶

𝟏
𝟐 ቈ𝐥𝐧 ቆ

𝑮𝟐𝑴𝟒

𝒄𝟒𝝅𝒓ା
𝟒

ቇ቉

𝟏
𝟐

ቑ 

 

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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We have also plotted a graph internal energy v/s horizon radius Fig.5.3 

   

 

 

In the above plot of internal energy at α=0 shows that it decreases as horizon radius increases. 

From the area-entropy theorem, we know that the entropy of the black hole is proportional to 

the area covered by event horizon. So we can find the volume (v) of Schwarzschild black 

hole, 

 
𝑉 = 4𝐺 න 𝑆଴𝑑𝑟ା 

                                                  

                                                    𝑉 = 4𝐺 ∫
ଵ଺గయீమ

ಹ்
మ௥శ

ర

௖ర
𝑑𝑟ା 

 

 
𝐕 =

𝟔𝟒𝛑𝟑𝐆𝟑𝐓𝐇
𝟐𝐫ା

𝟓

𝟓𝐜𝟒
 

 
 

E 

Fig.5.3 Internal energy v/s black hole horizon radius taking G=M=1, 

fluctuations are taken as zero (α=0) 

(5.11)

(5.12)
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We plot volume v/s horizon radius Fig.5.4 and see that the volume increases as the radius 

increases for a Schwarzschild blackhole. For the blackholes with small horizon radius the 

volume is infinitely small that it seems to be very low with respect to the singularity. 

` 

                                    

  

Since the black holes are considered as thermodynamic systems, we can calculate other 

macroscopic parameters such as pressure (P), from standard definition of thermodynamics; 

 
𝑃 = −

𝑑𝐹

𝑑𝑉
= −

𝑑𝐹

𝑑𝑟ା

𝑑𝑟ା

𝑑𝑉
 

 

Substituting 𝑇ு in (12) 

 
𝑉 =

16𝜋𝐺ଷ𝑀ଶ𝑟ା

5𝑐ସ
 

 

And  

Fig.5.4Volume v/s black hole horizon radius taking 
G=M=1 

(5.13)

(5.14)
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𝑟ା =

5𝑐ସ𝑉

16𝜋𝐺ଷ𝑀ଶ
 

 

Then  𝑑𝑟ା

𝑑𝑉
=

5𝑐ସ

16𝜋𝐺ଷ𝑀ଶ
 

 

Substituting for 𝑇ு in 𝐹 = −
ଵ଺గయீమ

ಹ்
య௥శ

ర

ଷ௖ర
  and differentiating with respect to 𝑟ା, 

 𝑑𝐹

𝑑𝑟ା
=

4𝐺ଶ𝑀ଷ

3𝑐ସ𝑟ା
ଷ

 

Therefore  

 

𝑷 =  

−𝟐𝟎𝒄𝟒𝑮𝟐𝑴𝟑𝝅 − 𝟔𝟎𝜶𝑴𝒄𝟑 + 𝟏𝟓𝜶𝑴𝒄𝟖 ൤𝐥𝐧 ൬
𝑮𝟐𝑴𝟒

𝝅𝒄𝟒𝒓ା
𝟒 ൰ + 𝟐൨

𝟒𝟖𝝅𝟐𝒓ା
𝟑 𝑮𝟑𝑴𝟑𝒄𝟒

 

 

(5.18) 

 

 

We plot pressure v/s horizon radius and studied the variations of black hole. 

 

 

 

 

 

 

            

 

 

 

 

In fig5.7 We observe an intense pressure for small r+ and the pressure decreases as r+ increases. 

 

 

              

Fig.5.6. Pressure v/s black hole horizon radius taking G=M=1, 

fluctuations are taken as zero (α=0) 

(5.15)

(5.16)

(5.17)
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There is an intense pressure initially while it is shifted to low with increase in the time. 

 

We have also studied the pressure v/s horizon radius plot for different α variations  

 

 

 

 

 

 

 

 

 

Here we see that pressure has a negative increase when horizon radius increases which finally 

approaches zero. 

Another thermodynamical quantity enthalpy (H) can be calculated using, 

 𝐻 = 𝐸 + 𝑃𝑉 

 

Using the expression of total energy, pressure and volume, the corrected enthalpy obtained 

as, 

 
𝐇 =

𝐜𝟔𝐒
𝟑
𝟐 − 𝟖𝛑

𝟑
𝟐𝐆𝟑𝐌𝟑

𝟔𝛑
𝟑
𝟐𝐆𝐫ା

𝟐𝐜𝟒

 
(5.20) 

Fig.5.7 Pressure v/s black hole horizon radius taking G=M=1, fluctuations 

are taken for different α values, α=0(blue line), α=1/2(red line), 

α=3/2(yellow line) 

(5.19)
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Where  

 
𝑆 =

4𝜋𝐺ଶ𝑀ଶ

𝑐ସ
− 𝛼 ln

𝐺ଶ𝑀ସ

𝑐ସ𝜋𝑟ା
ଶ 

 

(5.21) 

 

Variation of enthalpy with respect to black hole radius: 

 

 

 

 

 

 

 

 

 

As the horizon radius increases we see a decreasing behaviour for enthalpy 

 

The Gibb’s free energy is the maximum amount of work that can be performed by a 

thermodynamically closed system at constant temperature and pressure, this can be attained 

only on reversible process, and the Gibb’s free energy for Schwarzschild black hole for small 

fluctuations can be calculated. 

 𝐺 = 𝐹 + 𝑃𝑉 (5.22) 

     Fig5.8 Enthalpy v/s horizon radius for α=0 taking G=M=1 
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Using the expression for free energy, pressure and volume the Gibb’s free energy (G) is; 

 
𝐆 =

−𝟐𝐆𝟐𝐌𝟑

𝟑𝐜𝟒𝐫ା
𝟐

−
𝟐𝐜𝟒𝛂𝐌

𝛑𝐜𝟒𝐫ା
𝟐

−
𝛂𝐌

𝟐𝛑𝐫ା
𝟐

𝐥𝐧 ቆ
𝐆𝟐𝐌𝟐

𝛑𝐫ା
𝟒𝐜𝟒

ቇ +
𝟒

𝟑𝐜𝟒𝐫ା
𝟐
 

(5.23) 

 

Plot of Gibb’s free energy v/s black hole radius: 

 

 

 

 

 

 

 

 

 

 

From the plot we can see that when there is no fluctuations, as the horizon radius 

increases it slowly approaches zero. This can be also interpreted as that when the 

black hole is in a stable state it’s Gibb's free energy is nearly zero. 

 

 
 
 
 
 

Fig.5.9 Gibb’s free energy v/s horizon radius, taking G=M=1 for α=0 
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CHAPTER 6 
Kerr Black Hole 

 
It was Roy Kerr, who discovered the precise solution to Einstein's equations describing a 

black hole in 1963. It was later demonstrated that this solution is unique. The Kerr solution 

describes any spinning (uncharged) black hole and began a revolution in the knowledge of 

actual black holes from a theoretical perspective. A revolving, neutral black hole is described 

by the Kerr metric. The only three characteristics that distinguish a black hole are its mass, 

spin, and electric charge. The geometry of an empty area of space encircling an uncharged, 

rotating black hole can also be described by the Kerr metric. 

Because black holes have angular momentum, the Kerr metric provides some interesting 

predictions about the space-time surrounding them. For instance, Kerr black holes have two 

event horizons instead of one, and their shape is more like a squished sphere than a clean 

sphere. The singularity at the center of a Kerr black hole, however, is a 1-dimensional ring, 

which is even stranger. The black hole might even be seen if it were spinning quickly 

enough.. 

The Kerr metric can expressed in two forms: 

1. Boyer-Lindquist form 

2. Kerr-Schild form 

In Boyer-Lindquist form, in vicinity of mass M and angular momentum J it describes the 

geometry of space time. 

𝑑sଶ =
∆

஡మ
(dT − asinଶθd∅)ଶ −

஡మ

∆
dRଶ − ρଶdθଶ −

ୱ୧୬మ஘

஡మ
[(Rଶ + aଶ)d∅ − adT]                   (6.1) 

Where   
௃

ெ௖
= 𝑎 

∆=Rଶ − 2𝐺𝑀𝑅 + 𝑎ଶ 

ρଶ = Rଶ+𝑎ଶ𝑐𝑜𝑠ଶ𝜃 

Also the Kerr solution is represented in kerr-Schild form, which is proposed by Kerr and 

Schild in 1965 in terms of a particular set of Cartesian coordinates. 

𝑔ఓజ = 𝜂ఓజ + 𝑓𝑘ఓ𝑘జ                                                                                                              (6.2) 

𝑓 =
2𝐺𝑀𝑟ଷ

𝑟ସ + 𝑎ଶ𝑧ଶ
 



45 
 

𝜅 = (𝑘௫, 𝑘௬, 𝑘௭) 

𝑘଴ = 1 

𝜅 is a unit vector, M is the constant mass of spinning object,𝜂 is the Minkowski tensor, a is a 

constant rotational parameter of the spinning object. 

The event horizon of the Kerr black hole are found as the radius  

𝑟± = 𝑀 ± ඥ(𝑀ଶ − 𝑎ଶ) 

As the event horizon can exists only when 𝑎 ≤ 𝑀.The “Cosmic censorship” hypothesis states 

that holes always form with 𝐽 ≤ 𝑀ଶ: all singularities of black hole are protected by the 

horizon. 

There are two horizons: 

1. Outer horizon (𝑟ு≡𝑟ା): it corresponds to Schwarzschild horizon in limit of vanishing 

a. 

2. Inner horizon: also called as Cauchy horizon; where the space-time becomes unstable 

and is no longer described by the Kerr metric. 

There is a place called static limit, where the metric coefficient 𝑔௧௧ vanishes: 

𝑟 = 𝑀 + ඥ(𝑀ଶ − 𝑎ଶ𝑐𝑜𝑠ଶ𝜃) ≡ 𝑟௦௧௔௧ 

As there is a distance 𝑟௦௧௔௧ in the black hole, where 𝑔௧௧ = 0 and beyond which the angular 

velocity is positive. Therefore in the region 𝑟௦௧௔௧ < 𝑟 < 𝑟ு, there is no static observer: all 

observers will be dragged along in the direction of rotation of the black hole. This region is 

known as the ergo sphere. 

 
  
 
 

 
 
 
 
 
 
 
 
 
 
 

Horizon 

Static limit 

ergo sphere 
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CHAPTER 7 
Logarithmic Correction To The Entropy Of Kerr Black Hole 

 
 
Let’s consider the metric of Kerr black hole to begin our discussion, 

 
𝑑sଶ =

∆

ρଶ
(dT − asinଶθd∅)ଶ −

ρଶ

∆
dRଶ − ρଶdθଶ −

sinଶθ

ρଶ
[(Rଶ + aଶ)d∅ − adT] 

 

Where       
௃

௡
= 𝑎 

                   ∆=Rଶ − 2𝐺𝑀𝑅 + 𝑎ଶ 

                ρଶ = Rଶ+𝑎ଶ𝑐𝑜𝑠ଶ𝜃 

 

Kerr space-time has coordinate singularities in the axis symmetry (𝜃 = 0) and in those values 

of r for which (∆= 0).This last conditions can be written as 

 ∆= (𝑟 − 𝑟ା)(𝑟 − 𝑟 ) 

 

 

Then the event horizon of the Kerr black hole are found as the radius, 

  

𝑟± = 𝑀 ± ඥ(𝑀ଶ − 𝑎ଶ) 

 

Equation (3) makes it possible to distinguish three cases, 𝑀ଶ < 𝑎ଶ, 𝑀ଶ > 𝑎ଶ, 𝑀ଶ = 𝑎ଶ. 

In addition, it has curvature singularities when,  ρ = 0. 

 

The angular velocity of the black hole, which is constant at the horizon, can be written as, 

 Ω =
𝑎

𝑟ା
ଶ + 𝑎ଶ

 

 

 

(7.1)

(7.2)

(7.3)

(7.4)
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Using (3), we have, 

 Ω =
𝑎

2𝑀(𝑀 + ඥ(𝑀ଶ − 𝑎ଶ)
 

 

 

Bekenstein proposed that the entropy of a black hole is represented by equation, 

 
𝑆 =

𝑟𝑘𝑩𝑐ଷ

ℏ𝐺
𝐴 

 

 

Where r is a dimensionless constant, Hawking found that r corresponds to 𝑌𝟒, based as the 

application of quantum field theory over curved spaces to black holes, then the entropy of 

black hole can be , 

 
𝑆 =

1

4

𝑘𝑩𝑐ଷ

ℏ𝐺
𝐴 

 

 

In the system of natural units (ℏ = 𝐺 = 𝑐 = 1), 

 
𝑆 =

𝐴

4
 

 

 

Where 𝐴 = 4𝜋(𝑟ା
ଶ + 𝑎ଶ) is the area of the event horizon of Kerr black hole,  

 

 
𝑆 =

4𝜋(𝑟ା
ଶ + 𝑎ଶ)

4
= 𝜋(𝑟ା

ଶ + 𝑎ଶ) 

 

 

Differentiating equation (9) with respect to and assuming that parameter a is small than r and 

M, 

  

𝑑𝑆 = 2𝜋𝑟ା. 𝑑𝑟 

 

Using (3),  

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)
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𝑑𝑆 = 2𝜋

𝑟ଶ

ඥ(𝑀ଶ − 𝑎ଶ)
𝑑𝑀 

 

 

The black hole can be considered as a system in a state of thermodynamic equation that obeys 

the first law, 

  

𝑑𝑀 = 𝑇𝑑𝑆 + Ω𝑑𝑆 + Ψ𝑑𝑄 

 

For the case of neutral black hole (dQ=0), 

 

Replacing equation (5) and equation (4) in equation (12), 

 
𝑑𝑀 = 2𝜋𝑇

𝑟ଶ

ඥ(𝑀ଶ − 𝑎ଶ)
𝑑𝑀 +

𝑎

𝑟ା
ଶ + 𝑎ଶ

𝑑𝐽 

 

 

By doing a<<M and using J=aM, we find that Hawking temperature is, 

 

 
𝑻 =

𝟏

𝟐𝝅

ඥ(𝑴𝟐 − 𝒂𝟐)

𝒓ା
𝟐 + 𝒂𝟐

 

 

 

According to equation (3), the hawking temperature for Kerr black hole can finally be 

represented as, 

 

 
𝑇 =

1

2𝜋

ඥ(𝑀ଶ − 𝑎ଶ)

[2𝑀ଶ + 2𝑀ඥ(𝑀ଶ − 𝑎ଶ)]
 

 

 

The corrected entropy by incorporating small fluctuation around thermal equilibrium is given 

by, 

 𝑆 = 𝑆଴ − 𝛼ln (𝑆଴𝑇ு
ଶ) 

 

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)
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𝑆଴ = 𝜋(𝑟ା
ଶ + 𝑎ଶ) 

 

𝑇 =
1

2𝜋

ඥ(𝑀ଶ − 𝑎ଶ)

(𝑟ା
ଶ + 𝑎ଶ)

 

Substituting 𝑆଴ and 𝑇 in equation (16), 

  

𝑺 =  𝝅(𝒓ା
𝟐 + 𝒂𝟐) −  𝜶𝐥𝐧 ቆ

𝑴𝟐 − 𝒂𝟐

𝟒𝝅(𝒓ା
𝟐 + 𝒂𝟐)

ቇ 

 

Where a is the Kerr parameter, 𝑎 = 0.9982𝑀. 

 

 
We have plotted a graph showing the variations of entropy with horizon radius(Fig.7.1 
&Fig.7.2) 
 
 
 
 
 
 
 
 
 
 
 
                                          
 
                                         Fig.7.1 Entropy vs Horizon radius taking M=1 for α=0 

                                          
                                   Fig 7.2. Entropy vs Horizon radius taking M=1 for α=0(blue),α=1/2(red),α=3/2(yellow) 
 
 
 

(7.17)
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From the above plot Fig.7.1& Fig.7.2 w find that the entropy of a kerr blackhole increases 

with increase in the horizon radius. This satisfies the area - entropy law of thermodynamics. 
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CHAPTER 8 
Thermodynamic Equation of States 

 
By adding minor fluctuations to the systems, we construct various thermodynamic equations 

of states in this chapter. We begin by calculating Helmholtz free energy. By knowing the 

equation of entropy and temperature, we calculate free energy, 

 

 
𝐹 = − න 𝑆. 𝑑𝑇ு 

 
 
Substituting in S from 𝑇ு, 
 

𝐹 = − න 𝑆. 𝑑𝑇ு = − න 𝜋(𝑟ା
ଶ + 𝑎ଶ) −  𝛼ln(𝜋𝑇ଶ(𝑟ା

ଶ + 𝑎ଶ)) . 𝑑𝑇 

 
 𝑭 = − 𝝅(𝒓ା

𝟐 + 𝒂𝟐)𝑻 +  𝜶{𝐥𝐧(𝝅𝑻𝟐(𝒓ା
𝟐 + 𝒂𝟐)𝑻 − 𝟐𝑻)} + 𝑪 

 
 
We plot a graph showing the variation of Free energy with horizon radius. From the plot we 

see that Free energy tends to be decreasing in the negative range as we increase the horizon 

radius. 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(8.1)

(8.2)

 
Fig 8.1. Free energy vs Horizon radius taking M=1
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The internal energy can be found out by considering the first law of thermodynamics, 
 
 

𝐸 = න 𝑇ு𝑑𝑆 

 
 

𝑆 =  𝜋(𝑟ା
ଶ + 𝑎ଶ) −  𝛼ln ቆ

𝑀ଶ − 𝑎ଶ

4𝜋(𝑟ା
ଶ + 𝑎ଶ)

ቇ 

 
For 𝛼 = 0,  𝑆 =  𝜋(𝑟ା

ଶ + 𝑎ଶ) 
 
Then  
 

𝑇 =
1

2𝜋

ඥ(𝑀ଶ − 𝑎ଶ)

(𝑟ା
ଶ + 𝑎ଶ)

=
ඥ(𝑀ଶ − 𝑎ଶ)

2𝑆
  

 

Therefore                              𝐸 = ∫
ඥ(ெమି௔మ)

ଶௌ
𝑑𝑆 

 
 

𝑬 =
ඥ(𝑴𝟐 − 𝒂𝟐)

𝟐
𝒍𝒏 ቀ 𝝅(𝒓ା

𝟐 + 𝒂𝟐)ቁ 

 
 
 

                                               
                                             
                                          Fig.8.2 Internal energy vs Horizon radius taking M=1 
 
We have plotted internal energy with horizon radius and found that it shows an increasing 

behavior with increase in the radius. 

(8.3)

(8.4)

(8.5)
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From the area-entropy theorem, we know that the entropy of the black hole is proportional to 

the area covered by event horizon. Thus we can find the volume of Kerr black hole. 

 
𝑉 = 4𝐺 න 𝑆଴𝑑𝑟 

 
 

𝑉 = 4𝐺 න  𝜋(𝑟ା
ଶ + 𝑎ଶ). 𝑑𝑟 

 
 

𝑽 =
𝟒𝑮𝝅𝒓(𝒓𝟐 + 𝟑𝒂𝟐)

𝟑
 

 
A graph is plotted showing the variation of volume of Kerr blackhole with the 

horizon radius. We see that the volume shows an increasing behavior. 

 
 
 
 
 

 
 

                                             Fig 8.3. Volume vs Horizon radius taking M=1. 
 
 
As black holes are considered as thermodynamic systems, we can calculate other 

macroscopic parameters such as pressure (P), from standard definition of thermodynamics 

 

 
𝑃 = −

𝑑𝐹

𝑑𝑉
= −

𝑑𝐹

𝑑𝑟ା

𝑑𝑟ା

𝑑𝑉
 

 
 

From V, we have 𝑟 =
ଷ௏

ସீగ௥(௥మାଷ௔మ)
  

 

(8.6)

(8.7)

(8.8)
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 𝑑𝑟ା

𝑑𝑉
=

𝑑

𝑑𝑉
൜

3𝑉

4𝐺𝜋𝑟(𝑟ଶ + 3𝑎ଶ)
ൠ =

3

4𝐺𝜋𝑟(𝑟ଶ + 3𝑎ଶ)
 

 
 
And 𝐹 = −𝜋(𝑟ା

ଶ + 𝑎ଶ)𝑇 
 
 𝑑𝐹

𝑑𝑟ା
=

𝑑

𝑑𝑟ା

{−𝜋(𝑟ା
ଶ + 𝑎ଶ)𝑇} = −2𝜋𝑟ା𝑇 

 
 
Substituting these we get pressure as, 
 

𝑷 =
𝟑𝒓ାඥ(𝑴𝟐 − 𝒂𝟐)

𝟒𝑮𝝅(𝒓𝟐 + 𝒂𝟐)(𝒓𝟐 + 𝟑𝒂𝟐)
 

 
 

 

                                   
Fig 8.4. pressure vs horizon radius taking M=1,G=1 

 
Plotting pressure with horizon radius shows that though the pressure shows a slight increase 
initially it suddenly decreases to zero on increasing the horizon radius. 
 
 
The enthalpy of Kerr black hole can be calculated from 
 
                                                      H=E+PV 

 
 
 
Substituting for E, P and V 
 
 
 
 

𝑯 =
ඥ(𝑴𝟐 − 𝒂𝟐)

𝟐
 𝒍𝒏 ቀ 𝝅(𝒓ା

𝟐 + 𝒂𝟐)ቁ +
𝒓𝟐ඥ(𝑴𝟐 − 𝒂𝟐)

(𝒓𝟐 + 𝒂𝟐)
 

 

(8.9)

(8.10)

(8.11)

(8.12)

(8.13)

T
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Fig.8.5 Enthalpy vs Horizon radius taking M=1 
 
When we plot enthalpy with horizon radius we see an increasing behavior like the internal 
energy. 
 
 
Finally the Gibb’s free energy of Kerr black hole can be derived by using the equation  
 
                                                                                         G=F+PV 

 
   
 
 

𝑮 =
−𝝅(𝒓𝟐 + 𝒂𝟐)𝟐 + 𝒓𝟐ඥ(𝑴𝟐 − 𝒂𝟐)

(𝒓𝟐 + 𝒂𝟐)
 

 

(8.15) 

 
 
 
 
 
 
 
 
 

 

 

Fig . 8.6 Gibb’s free energy vs horizon radius taking M=1 

(8.14)
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We plot the variation of Gibb’s free energy with horizon radius and was seen that as the 

radius increases Gibb’s energy shows a decreasing behavior. 
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CHAPTER 9 

Study on the stability of Black Holes 

 

Numerous investigations on the event horizon, singularities, and the nature of black holes 

have been conducted since the publication of Einstein's Theory of General Relativity in 1915. 

Karl Schwarzschild was able to solve Einstein's field equations for a non-spinning, 

spherically symmetric black hole after that; Roy Kerr later also provided the solution  for a 

rotating black hole. Both the Schwarzschild and Kerr family of black holes are vacuum 

solutions of the Einstein Equation. 

John Wheeler established the foundation for stability studies on the Schwarzschild metric. 

Understanding stability is crucial since its solutions are quite accurate. We investigate the 

thermodynamic stability of Schwarzschild and Kerr black holes based on black hole 

thermodynamics. We compute specific heat capacity by including minor thermal fluctuations, 

which is one method, and from the positivity of specific heat, we can ensure the local thermal 

stability of the black hole. This method was developed in general relativity to explore the 

stability of those black holes. The most necessary conditions P>0, is required for showing 

that black holes in general relativity to be thermodynamically stable. 

Stability of Schwarzschild Black hole 

From the most standard relation, we can calculate the specific capacity as, 

 
𝐶 =

𝑑𝐸

𝑑𝑇ு
=

𝑑𝐸

𝑑𝑟ା

𝑑𝑟ା

𝑑𝑇ு
 

 

(9.1)
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𝐶 =

𝑐ଶ ൤
4𝜋
𝑐ସ −∝ ln(

1
𝑐ସ𝜋𝑟ା

ସ)൨

ଷ
ଶ

3 × 2
ଷ
ଶ𝜋ଶ𝑟ା

ଷ(
𝑀

2𝜋𝑟ା
ଶ)

ଷ
ଶ

 

 

(9.2) 

The calculated value of   3 × 2
య

మ   is 8.485 which is approximated as ≈ 8.5, then 

 

𝑪 =

𝒄𝟐 ൤
𝟒𝝅
𝒄𝟒 −∝ 𝐥𝐧(

𝟏

𝒄𝟒𝝅𝒓ା
𝟒 )൨

𝟑
𝟐

𝟖. 𝟓𝝅𝟐𝒓ା
𝟑 (

𝑴

𝟐𝝅𝒓ା
𝟐 )

𝟑
𝟐

 

 

 

Specific heat capacity v/s horizon radius for different α values are shown below(Fig:9.1) 

 

 

From the figure, we see that when the perturbation ∝ is zero, the system shows a 

linear stability. The linearly curve remains constant on increasing the horizon radius. 

The equilibrium values of specific heat is positive always indicates that the black hole 

is in stable phase on the absence of thermal fluctuations. The most general stability 

seen for black holes are linear stability which assumes that the metric solution is 

stable when the perturbations are linear. Research work of  Dafermos, Holzegel, and 

Rodnianski etal. would expand their proofs to prove full linear stability for the Schwarzschild 

Fig 9. 1.Specific heat capacity v/s horizon radius taking G=M=1 for 
different fluctuations 
 

r+ 

(9.3)
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black hole. Non-linear stability is also seen, but it doesn’t make any assumption on the 

form perturbations and it can be taken as an open problem now. 

 
Stability of Kerr Black Hole 

 
  

Specific heat capacity, 
 

𝐶 =
𝑑𝐸

𝑑𝑇ு
=

𝑑𝐸

𝑑𝑟ା

𝑑𝑟ା

𝑑𝑇ு
 

 

(9.4) 

 
 

𝐸 =
ඥ(𝑀ଶ − 𝑎ଶ)

2
𝑙𝑛൫ 𝜋(𝑟ା

ଶ + 𝑎ଶ)൯ 

 

(9.5) 

 
 𝑑𝐸

𝑑𝑟ା
=

𝑟ඥ(𝑀ଶ − 𝑎ଶ)

𝑟ଶ + 𝑎ଶ
 

 

(9.6) 

 
And  
 𝑑𝑟ା

𝑑𝑇ு
= 2𝜋(𝑟ଶ + 𝑎ଶ) 

 

(9.7) 

 
Therefore 
 
 

𝑪 = 𝟐𝝅𝒓ඥ(𝑴𝟐 − 𝒂𝟐) 
 

(9.8) 

  
Fig 9. 2:Specific heat capacity vs Horizon radius of Kerr black hole taking M=1 
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From   Fig 9.2, we can see that specific heat capacity increases linearly with increase in the 

horizon radius. Since it varies linearly, we can see that the blackhole is stable. 

 

Comparison Between the thermodynamic quantities of Schwarzschild and 

Kerr Black holes 

 

Thermodynamic quantities Schwarzschild black hole Kerr black hole 

Metric  Spherically symmetric 

solution 

Stationary axially symmetric solution 

Entropy  Increases with Horizon 

radius 

𝑺 =
𝟒𝝅𝑮𝟐𝑴𝟐

𝑪𝟒
− 𝜶𝒍𝒏

𝑮𝟐𝑴𝟒

𝑪𝟒𝝅𝒓ା
𝟒

 

 

Increases with Horizon radius 

𝑺 =  𝝅(𝒓ା
𝟐 + 𝒂𝟐) −  𝜶𝒍𝒏 ቆ

𝑴𝟐 − 𝒂𝟐

𝟒𝝅(𝒓ା
𝟐 + 𝒂𝟐)

ቇ 

 

Free energy At first increases then shows 

a constant behavior 

 𝑭 = −
𝟏𝟔𝝅𝟑𝑮𝟐𝑻𝑯

𝟑 𝒓శ
𝟒

𝟑𝒄𝟒 +

𝜶𝑻[𝐥𝐧(
𝟏𝟔𝝅𝟑𝑮𝟐𝑻𝑯

𝟒 𝒓శ
𝟒

𝒄𝟒 ) − 𝟒] 

 

 

𝑭 = − 𝝅(𝒓ା
𝟐 + 𝒂𝟐)𝑻 +  𝜶{𝒍𝒏(𝝅𝑻𝟐(𝒓ା

𝟐 + 𝒂𝟐)𝑻 − 𝟐𝑻)} 

 

Internal energy  Decreasing with increase in 

Horizon radius 

𝑬 =
𝒄𝟐

(𝟒𝝅)
𝟏
𝟐𝑮(𝟐𝝅𝒓ା

𝟐 )
ቐ

𝟐𝑺
𝟑
𝟐

𝟑
ቑ 

Increase as the horizon radius 

increases 

𝑬 =
ඥ(𝑴𝟐 − 𝒂𝟐)

𝟐
𝒍𝒏൫ 𝝅(𝒓ା

𝟐 + 𝒂𝟐)൯ 
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Volume Increases(side opening 

parabola) 

𝑽 =
𝟔𝟒𝝅𝟑𝑮𝟑𝑻𝑯

𝟐 𝒓ା
𝟓

𝟓𝒄𝟒
 

Increases(Top opening parabola) 

𝑽 =
𝟒𝑮𝝅𝒓(𝒓𝟐 + 𝟑𝒂𝟐)

𝟑
 

Pressure Decreasing behavior 

𝑷 =  
−𝟐𝟎𝒄𝟒𝑮𝟐𝑴𝟑𝝅 + 𝟐

𝟒𝟖𝝅𝟐𝒓ା
𝟑 𝑮𝟑𝑴𝟑𝒄𝟒

 

 

Decreasing behavior 

𝑷 =
𝟑𝒓ାඥ(𝑴𝟐 − 𝒂𝟐)

𝟒𝑮𝝅(𝒓𝟐 + 𝒂𝟐)(𝒓𝟐 + 𝟑𝒂𝟐)
 

Enthalpy Decreasing behavior 

 

𝑯 =
𝒄𝟔𝑺

𝟑
𝟐 − 𝟖𝝅

𝟑
𝟐𝑮𝟑𝑴𝟑

𝟔𝝅
𝟑
𝟐𝑮𝒓ା

𝟐 𝒄𝟒

 

Increasing behavior 

𝑯 =
ඥ(𝑴𝟐 − 𝒂𝟐)

𝟐
 𝒍𝒏൫ 𝝅(𝒓ା

𝟐 + 𝒂𝟐)൯ +
𝒓𝟐ඥ(𝑴𝟐 − 𝒂𝟐)

(𝒓𝟐 + 𝒂𝟐)
 

 

Gibb’s free energy  As horizon radius increase, 

it approaches to zero. 

𝐺 =
−2𝐺ଶ𝑀ଷ

3𝑐ସ𝑟ା
ଶ +

4

3𝑐ସ𝑟ା
ଶ 

It shows a decreasing behavior. 

𝑮 =
−𝝅(𝒓𝟐 + 𝒂𝟐)𝟐 + 𝒓𝟐ඥ(𝑴𝟐 − 𝒂𝟐)

(𝒓𝟐 + 𝒂𝟐)
 

 

Stability Linear variation which turns 

to a constant value 

𝐶 =

𝑐ଶ ൤
4𝜋
𝑐ସ −∝ ln(

1
𝑐ସ𝜋𝑟ା

ସ)൨

ଷ
ଶ

8.5𝜋ଶ𝑟ା
ଷ(

𝑀
2𝜋𝑟ା

ଶ)
ଷ
ଶ

 

Linearly varies 

𝑪 = 𝟐𝝅𝒓ඥ(𝑴𝟐 − 𝒂𝟐) 
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CHAPTER 10 

CONCLUSION 

 

A fascinating topic that touches on both the classical and quantum facets of gravity is black 

hole thermodynamics. Despite being fundamentally quantum in nature, a black hole's 

thermodynamic charges like entropy and temperature are connected to traditional 

characteristics like horizon size and surface gravity. 

In this project , we analyze the thermodynamic characteristics of Kerr and Schwarzschild 

black holes. The horizon radius is used as the basis for the analysis of thermodynamic 

variables. Schwarzschild black hole, a solution to the Einstein’s field equations, plays an 

important role in understanding the general theory of relativity. Kerr black hole is an 

uncharged black hole that rotates about a central axis. Slightly perturbed equilibrium 

solutions of the Schwarzschild black hole and Kerr black hole give rise to the black hole 

dynamics and they turned out to have a close analogy to the conventional thermodynamic 

laws. Also the selected systems are given logical corrections, and the variations of the 

thermodynamic parameters were simulated using MATLAB. The studies are further 

expanded to examine black holes' thermodynamic stability. 
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