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ABSTRACT 

 

 

Neurons are the tools responsible for transmitting information all over the body via electrical 

and chemical signals that coordinate all the important functions in our life which makes it an 

incredibly complex communication system. The Izhikevich neuron model is a mathematical 

description of how neurons in the brain integrate and transmit information through electrical 

impulses. It is a simplified and computationally efficient model that captures the essential 

features of real neurons. The model consists of two differential equations that describe the 

dynamics of the membrane potential and the recovery variable. The dynamics of the model can 

be adjusted to replicate different types of neurons found in the brain, including regular spiking, 

fast spiking, and intrinsically bursting neurons. 

In this project, to characterise the behaviour of neurons under electromagnetic stimulation and 

noise, the Izhikevich model is suggested and the characteristics were obtained. For further 

studies we extended the work by using a three-varible memristive Izhikevich model and 

derived the characteristics of neurons and the resulting equations were similar to that of the 

Izhikevich model when compared. The influence of internal and external magnetic fields on 

neurons can also be represented by this model. 
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CHAPTER-1 

NON-LINEAR DYNAMICS 

 

We can see lots of dynamical systems around us. A dynamical system is the one in which the 

state of its constituent particles varies with time. The way the system variables change can be 

expressed by virtue of differential equations. Some of the examples of dynamical systems are 

population growth, motion of celestial bodies etc. 

Dynamical systems are expressed in two ways: discrete time steps or a continuous timeline. 

A state space also called a phase space is a mode used within dynamical systems to capture the 

change in a system over time. A state space is a two or probably three-dimensional graph in 

which all possible states of system are represented. 

We can model the change in a system state as either continuous or discrete. Firstly, continuous 

measuring the time intervals between our measurements are negligibly small making it appear 

as one long continuum and it is done through the language of calculus. On the other hand, we 

can measure time as discrete, meaning there is a discrete or definite time interval between each 

measurement and we use iterative maps to do this. 

Continuous state systems can be further classified into: 

i. Linear 

ii. Non-linear 

Continuous state systems can be used to describe the evolution of the state. In linear system, 

the evolution of state is governed by linear differential equations whereas in non-linear system 

the evolution is governed by non-linear equations. 

Nonlinear dynamics is the study of systems that can exhibit complex and unpredictable 

behavior, often characterized by sensitivity to initial conditions, feedback loops, and non-linear 

relationships between different elements or variables. These systems can include physical 

systems like weather patterns, biological systems like ecosystems or neural networks, as well 

as social systems like stock markets or political movements. 
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Nonlinear dynamics is an interdisciplinary field that combines elements of mathematics, 

physics, biology, and other fields to better understand these complex systems and their 

behavior. This knowledge is used to develop models and simulations that can help us predict 

how these systems may behave under different conditions, and inform decision-making in a 

variety of contexts. 

Nonlinear systems are a type of mathematical model that does not follow a linear relationship 

between the input and output variables. In other words, the output of a nonlinear system is not 

proportional to the input. Instead, nonlinear systems exhibit more complex behaviours and 

patterns, often involving feedback loops, oscillations, chaos and other interesting phenomena. 

 Nonlinear systems can be found in numerous fields such as physics, chemistry, biology, 

economics, engineering and many others. Because of their complexity, nonlinear systems can 

be challenging to analyze and predict. However, many techniques have been developed to study 

and simulate nonlinear behaviour, such as numerical methods, bifurcation analysis, chaos 

theory and adaptive control systems. These tools allow researchers to better understand the 

behaviour of complex systems and make more accurate predictions about their dynamics. 

 

1.1 CHARACTERISTICS OF NON-LINEAR SYSTEMS 

Nonlinear systems can exhibit many characteristics that make them distinct from linear 

systems. Here are some of the key characteristics of nonlinear systems: 

1. Non-proportionality: The relationship between input and output variables is not linearly 

proportional, meaning that changes in the input do not produce a corresponding change in the 

output. 

2. Sensitivity to Initial Conditions: Small changes in the initial conditions of a nonlinear system 

can have a significant impact on the final outcome or behavior of the system. 

3. Emergent Behaviors: Nonlinear systems can exhibit emergent behaviors or patterns that are 

different from the individual behavior of the components that make up the system. 

4. Feedback Loops: Nonlinear systems often involve feedback loops, where the output of the 

system is fed back as input, leading to self-reinforcing or self-cancelling effects. 
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5. Chaotic Behavior: Certain nonlinear systems can exhibit chaotic behavior, meaning that they 

are highly sensitive to initial conditions and exhibit complex, seemingly random patterns of 

behavior. 

6. Multiple Equilibria: Nonlinear systems may have multiple equilibria or steady states, 

meaning that the system can settle into multiple stable states depending on the initial 

conditions. 

7. Non-locality: In some nonlinear systems, phenomena can arise that cannot be explained 

solely by local interactions between the components of the system, but instead require 

considering the system as a whole. 

Understanding these characteristics is important for analyzing and predicting the behavior of 

nonlinear systems, and for developing computational and analytical tools to simulate and 

control them. 

 

Nonlinear dynamics is the study of complex and often chaotic behavior in nonlinear systems. 

It involves the analysis of systems with multiple variables whose interaction is described by 

nonlinear equations. This makes it different from linear dynamic systems, where the behavior 

of the system is much more predictable. 

Nonlinear dynamics plays a fundamental role in many fields, including physics, chemistry, 

biology, economics, and engineering. Some examples of systems that can be described using 

nonlinear dynamics principles include weather systems, population growth models, chemical 

reactions and chaotic systems. 

Nonlinear dynamics often involves the use of advanced mathematical tools, such as differential 

equations, chaos theory, and bifurcation analysis, among others. These techniques allow us to 

understand and predict the behavior of complex and nonlinear systems, identify and analyze 

stable and unstable solutions, and recognize patterns of behavior. 

Linear dynamics deals with systems that are additive, homogeneous, and have a proportional 

response to inputs. This means that double the input will likewise double the output. The 

behavior of the system is predictable and straightforward. Examples of linear systems include 

pendulums and springs. 
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Nonlinear dynamics deals with systems that are not additive, not homogeneous, and do not 

have a proportional response to inputs. Nonlinear systems are characterized by feedback loops 

and non-linear relationships between their inputs and outputs. These systems are often more 

complex and difficult to predict than linear systems. Examples of nonlinear systems include 

chaotic systems such as weather patterns, fluid dynamics, and biological systems. 

In summary, the main difference between linear and nonlinear dynamics is that linear systems 

are predictable, while nonlinear systems are often more complex and difficult to predict. 

One of the key features of nonlinear dynamics is that it can exhibit non-repeating patterns over 

long periods of time, even though those patterns are ultimately deterministic. This is the 

hallmark of chaos, which is one of the most fascinating aspects of nonlinear dynamics. 

Understanding nonlinear dynamics is important not only for understanding the behavior of 

complex systems, but also for developing practical applications, such as control algorithms for 

complex systems or predicting the outcomes of complex phenomena. 

 

1.2 BIFURCATION  

A system experiences a bifurcation when a parameter change causes a qualitative shift in the 

output. A bifurcation can cause a cell membrane's voltage to shift under specific circumstances 

from being at rest to being oscillatory. Bifurcation analysis is frequently used to comprehend 

the oscillatory characteristics of tiny networks. Bifurcations occur in dynamical systems, which 

are mathematical equations. 

The equation ( ),xF
dt

dx
=  can be used to define a dynamical system in general, where x is 

an n-dimensional vector of unknowns, m is an m-dimensional vector of parameters, and F is a 

function that depends on the two.  

Bifurcation analysis in neural networks is the study of the emergence and disappearance of 

stable attractors and their bifurcations as the network parameters are varied. Here, a bifurcation 

refers to a qualitative change in the behavior of the network as its parameters are adjusted. 

In a neural network context, bifurcations typically involve the emergence or disappearance of 

fixed points (stable or unstable equilibrium points) or limit cycles. To better understand these 

phenomena, bifurcation analysis is performed by studying the dynamics of the network under 



Page | 6  
 

varying conditions, such as changes in input patterns or variations in the strengths of synaptic 

connections. 

Bifurcation analysis can be used to identify regions of parameter space in which the network 

exhibits stable or unstable behavior, as well as to predict the onset of new patterns of activity 

or transitions between existing patterns. By providing insights into the behavior of complex 

systems like neural networks, bifurcation analysis can aid in the design and optimization of 

such systems for various applications. 

 

1.3 LIMIT CYCLES 

In neural network analysis, limit cycles refer to the pattern of oscillations that occur in a 

network's activity over time. These cycles represent a stable and recurring pattern of neuron 

firing that can occur in certain networks.  

The existence of limit cycles can have important implications for the behavior of the network. 

For example, the presence of limit cycles in a neural network can contribute to its ability to 

perform certain types of computations or to exhibit complex dynamic behaviors.  

However, limit cycles can also be problematic in certain situations, particularly in the context 

of learning and training. If a network gets stuck in a limit cycle, it may be difficult to modify 

its behavior through training or other interventions.  

Overall, the analysis of limit cycles is an important area of research in neural network analysis, 

as it can help us understand the behavior of neural networks in a wide range of contexts. 

Limit cycles are observed in recurrent neural networks (RNNs) due to the presence of time-

delayed feedback loops in the network. These feedback loops cause the activation of neurons 

to feedback on themselves, creating a periodic oscillation in the network's activity. 

Examples of limit cycles in neural networks include: 

1. Hopfield Network - In this network, a set of binary threshold neurons are interconnected 

with symmetric weights. The network has a limit cycle where the binary states of its neurons 

oscillate among different stable states. 
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2. FitzHugh-Nagumo (FHN) Neuron Model - This network is a two-dimensional system of 

differential equations that models the behavior of a biological neuron. The network exhibits a 

limit cycle when the applied input is above a certain threshold. 

3. Van der Pol Oscillator - This is a nonlinear oscillator that exhibits a limit cycle when the 

applied input is above a certain threshold. It is used to model several biological processes, 

including neural activity. 

4. Coupled Oscillators - In a network of coupled oscillators, the oscillators are interconnected 

in such a way that they influence each other's dynamics. This results in a limit cycle that is 

synchronized across all the oscillators in the network. 

Overall, limit cycles play an essential role in the dynamics of many neural networks, and they 

are important for modeling a wide range of systems in neuroscience and engineering. 

 

                                                                Figure 1: Different types of limit cycles [1] 

 

1.4 CHAOS 

Chaos in neural network analysis refers to the phenomenon where small changes or 

perturbations in initial conditions can result in very large differences in the behavior of the 

neural network. This can make it difficult to predict or analyze the behavior of the neural 

network, as small changes in the input or in the network structure can result in vastly different 

outputs. 

One way to deal with chaos in neural network analysis is to use statistical techniques such as 

sensitivity analysis or Monte Carlo simulations, which can help to quantify the effects of small 

changes or uncertainties in the initial conditions. Additionally, it may be helpful to use more 

robust or stable neural network architectures that are less sensitive to small perturbations. 

Overall chaos in neural networks can be challenging to deal with, but with careful analysis and 
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modelling techniques, it is possible to mitigate its effects and gain a better understanding of the 

behavior of these complex systems. 

Here are a few examples of chaos in neural network analysis: 

1. Sensitivity to initial conditions: Neural networks are highly sensitive to small changes in the 

initial conditions. Even a minor variation can significantly affect the output of the network, 

leading to chaotic behavior. 

2. Chaotic attractors: Some neural networks exhibit chaotic attractors, which are regions of the 

network's state space where the system will eventually settle. These attractors are characterized 

by their sensitivity to initial conditions and the presence of complex, irregular oscillations. 

3. Bifurcations: Bifurcations occur when the behavior of a neural network changes abruptly as 

a parameter is varied. In some cases, these changes can lead to chaotic behavior, as the network 

enters into a regime of complex, unpredictable dynamics. 

4. Butterfly effect: The butterfly effect is a term used to describe the sensitivity of chaotic 

systems to small changes. In neural network analysis, it refers to the fact that a small change in 

one part of the network can have a significant impact on the behavior of the network as a whole. 

Overall, the presence of chaos in neural network analysis underscores the complexity of these 

systems and the challenges involved in understanding and predicting their behavior. 

1.5 REFERENCES  

[1]https://www.google.com/imgres?imgurl=https://media.springernature.com/original/springe

r-static/image/prt%253A978-1-4419-9863-7%252F12/MediaObjects/978-1-4419-9863-

7_12_Part_Fig1533_HTML.gif&tbnid=7lVyfIxcGO8JmM&vet=1&imgrefurl=https://lecture

notes.in/discussion-forum/question/what-are-limit-cycles 

sko09t8mf&docid=tEuAscFkz_A7bM&w=498&h=138&source=sh/x/im/1  
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CHAPTER-2 

THE NEURAL NETWORK 

 

2.1 WHAT IS A NEURON? 

The basic unit of neuron system is known as neuron. The 10% of brain is comprised of neurons. 

There are approximately 86 billion neurons in the body. The nervous system decides all the 

basic functions of the body also helps in necessary functions such as how we act, helps us 

remember things and even alter the state of internal organs. For all this the nervous system 

relies on – the neurons. Group of these neurons are called the neural network. The main 

function of a neuron is to carry the information throughout the body. This is using chemical 

signals and electrical impulses. These impulses are sent to different parts of the brain i.e simply 

the excitation from one neuron to the other. 

Depending on its purpose and location, a neuron can have different sizes and shapes. Dendrites, 

cell bodies, and axons are the three distinct components of all neurons. 

 

  

Figure 2: Structure of a Neuron [1] 

We can compare a neuron with a tree for simplicity. Dendrites which resemble branches are 

tiny filaments and are involved in the passage of messages from other neurons to the cell body. 

The axon which compared to root of the tree is also called the nerve fibre is neurons output 
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structure. The axon is where neurons may communicate with one another by exchanging 

electrical impulses or messages. It is a long projection that carries information from the soma 

to nearby cells.  When to communicate with another, it sends an electrical signal called an 

action potential along the whole axon. The soma or the cell body resembles the tree trunk which 

is the powerhouse of the cell nerve cell and contains the nucleus.  It transports DNA and 

proteins along the axon and dendrites. A cell nucleus, which produces genetic data and 

activates protein synthesis, is part of the soma. These proteins are necessary for the normal 

functioning of other neuronal components. Dendrites pick up the signal from an adjacent 

neuron's synapse. These dendrites send the impulse to the soma, or nucleus, of the nerve cells. 

This area processes the electrical impulse before sending it on to the axon. The impulse is 

transported from the soma to the synapse by the axon, the longest branch among the dendrites. 

The second neuron's dendrites get the impulse from the synapse after that. As a result, the 

human brain develops into a complicated network of neurons. 

 

2.2 STRUCTURE OF A NEURON 

A neuron mainly comprises of three main parts each of which is discussed below: 

 

2.2.1. DENDRITES:  

Dendrites are finger-like cells found on the terminal of a neuron. Dendrites are two millimeters 

long on average These are tiny, branching fibres that protrude from the nerve cell's cell body. 

This fibre expands the region that may be used to receive incoming data. Several cytoskeletal 

components, the Golgi apparatus, ribosomes, and smooth endoplasmic reticulum are found in 

dendrites and are involved in the activity of protein synthesis in the dendrites during signal 

transmission. Dendrites get information from other neurons or the body's nerves. These signals 

are sent through the nerve systems to the brain, which relays the information to various body 

components so that a response can occur.  

2.2.2. CELL BODY OR SOMA: 

The nucleus and other organelles which play important role in the neuronal function are located 

in the soma and it is spherical in shape. As the soma contains the nucleus the soma it carries 

the genetic information. The nucleolus, which creates the ribosomes required for protein 

synthesis, is also a part of the nucleus. The endoplasmic reticulum and the Golgi apparatus are 

also found in the cell body in addition to ribosomes. Together, these organelles help synthesize, 
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package, and sort proteins for delivery to other cell components. The primary function of 

neurons is to take information from the cells via dendrites and transmit it to other cells The cell 

body of bipolar neurons is in the center, while one axon and one dendrite protrude from each 

end. Instead of both attaching directly to the cell body, unipolar neurons have a projection that 

connects it to both the axon and the dendrite. The cell body of multipolar neurons is connected 

to a lengthy axon and several dendrites. 

2.2.3. AXON: 

 Axons, which are extremely thin nerve fibers, are responsible for transporting nerve impulses 

from one neuron (nerve cell) to another neuron. A human hair is often thicker than an axon. A 

neuron is in charge of processing and relaying the electrical signals involved in absorbing 

sensory input, providing motor instructions to your muscles, and controlling movement. One 

axon connects each neuron to other neurons, muscle cells, or glandular cells. The axon can 

carry messages more swiftly the larger its diameter. Axons that are generally found inside a 

myelin sheath can be found in the deepest region of the neuron. 

2.3 SYNAPSE  

 The synapse is the point at which two neurons connect. A synapse is the point at which two 

neurons come together, or between a neuron and a target or effector cell, such a muscle cell. 

Signals that are electrical or chemical can be sent via it.  Between presynaptic and postsynaptic 

neurons, the synapse is created. The connection between a neuron and a muscle is called the 

neuromuscular junction [2].  By a synapse, nerve impulses are sent from the axon terminal of 

one neuron to the dendrites of the next neuron. The biological mechanism through which a 

neuron interacts with a target cell across a synapse is known as synaptic transmission. The 

synapse is divided into two types based on the way impulses are transmitted - It could be 

chemical synapse or electrical synapse. During chemical synaptic transmission, a 

neurotransmitter is produced from the pre-synaptic neuron and attaches to certain post-synaptic 

receptors. In electrical synapse direct and passive current is allowed to flow from one neuron 

to another. Electrical synapses are specialised ion channels that link the pre- and postsynaptic 

cells and which therefore become a pathway which has low resistance so that there is an easy 

current flow between any two cells. On the other hand, in a chemical synapse, a presynaptic 

neuron's action potential causes the release of neurotransmitters, which then causes a current 

to flow through the postsynaptic cell.  
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2.3.1 ELECTRICAL SYNAPSE: 

Electrical synapses happen faster than chemical synapses the transmission of an electric signal 

across the electrical synapse the same to the conduction of an impulse in an axon. When 

presynaptic and postsynaptic neurons are near to one another, gap junctions occur. At the gap 

junction, proteins channels provide a structural connection between pre- and postsynaptic 

neurons. Since electrical synapses can't transition from excitatory to inhibitory impulses, they 

are less flexible than chemical synapses [2]. It is found in several lower invertebrates. In 

humans, it can be found in the spaces between glial cells. 

2.3.2 CHEMICAL SYNAPSE: 

More synapses occur chemically. Neurotransmitters mediate the passage of nerve impulses 

through chemical synapses. The synaptic cleft is a fluid-filled void between the two neurons. 

One neuron cannot be followed by another by a nerve impulse. Axon terminals have a knob-

like structure that houses synaptic vesicles [2]. Synaptic vesicles from the terminal of the 

presynaptic neuron release neurotransmitters at the synaptic cleft as soon as the action potential 

reaches the terminals. The postsynaptic membrane's receptors allow neurotransmitters to attach 

to them. This causes ions to flow and voltage-gated channels to open. The postsynaptic 

membrane's polarity is altered as a result, and the electric signal is sent across the synapse. 

Neurotransmitters come in both excitatory and inhibitory kinds. Multiple cell types can respond 

differently to the same neurotransmitter. The neurotransmitter is excitatory and produces the 

action potential if there is a net influx of positively charged ions inside the cell which is called 

as EPSP, or excitatory postsynaptic potential [3]. The membrane hyperpolarizes and acts as an 

inhibitory neurotransmitter when the membrane potential becomes more negative. IPSP, or 

inhibitory postsynaptic potential, is produced by them [3]. When neurotransmitters bind to the 

receptor, either enzymes act on them or they are removed and recycled to stop the signal after 

it has been transmitted forward. 

2.4 ACTION POTENTIALS IN NEURONS: 

Neurons are electrically excitable, meaning that they respond to input by producing electrical 

impulses that propagate as action potentials throughout the cell and its axon. Changes in the 

cationic gradient (primarily sodium and potassium) across their plasma membranes generate 

and propagate these action potentials [4]. These action potentials eventually reach the axonal 

terminal and depolarize neighboring cells via synapses. This action is how these cells interact 

with one another, namely at synapses through synaptic transmission. Normally, the interior of 
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the cell is negative in comparison to its exterior. This is the resting membrane potential of 

approximately -60mV.When the negative inside potential reaches the threshold (less negative), 

a neuronal action potential is generated. This change in membrane potential opens a voltage-

gated cationic channel (sodium channel), resulting in depolarization and the generation of the 

neuronal action potential. Neuronal action potentials are essential for impulse propagation 

along any nerve fiber, even over long distances. They are also necessary for neuronal 

communication via synapses. Disruption of this mechanism can have severe consequences, 

resulting in a lack of impulse generation and conduction, as demonstrated by various 

neurotoxins and demyelinating disorders. 

he equilibrium potential for sodium is +55 mV at normal body temperature and -103 mV for 

potassium. The action potential is generated in three stages: (1) depolarization, a change in 

membrane potential from -60 mV to +40 mV caused primarily by sodium influx; (2) 

repolarization, a return to the membrane's resting potential caused primarily by potassium 

efflux; and (3) after-hyperpolarization, a recovery from a slight overshoot of the repolarization. 

The first stage is directed by increased membrane permeability to salt. As a result, removing 

extracellular sodium or inactivating sodium channels stops action potentials from being 

generated. The neuron cannot create another action potential immediately after an action 

potential is generated; this is known as the absolute refractory time. The sodium channels are 

currently inactivated and remain closed, whilst the potassium channels remain open. The 

relative refractory period follows, during which the neuron can only generate an action 

potential with a significantly higher threshold. This opens when some sodium channels are 

ready to open and many are still inactive, while some potassium channels are also open. 

The length of the refractory periods governs how quickly an action potential can be generated 

and propagated. The action potential propagates until it is terminated at a synapse, where it can 

either produce the release of neurotransmitters or the conduction of ionic currents. The latter 

takes place at electrical synapses, where presynaptic and postsynaptic cells interact without 

using neurotransmitters. Neurotransmitters, on the other hand, are the norm and are released at 

chemical synapses and neuromuscular junctions. 

If the local currents generated by depolarization along a part of the neuronal membrane are 

sufficiently strong, they can depolarize neighboring segments of the membrane to the 

threshold, spreading the action threshold down the membrane and along the neuron's axon. The 

extent to which the initial local currents expand before causing more depolarizations is the 
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decisive element in the speed of this propagation. The electrical resistance of the membrane 

and the internal contents of the axon are two factors that influence this speed. Internal resistance 

is lower in wider axons, and having more voltage-gated sodium channels in the membrane 

reduces membrane resistance as well. 

Slower action potential propagation is caused by higher internal resistance and lower 

membrane resistance. Because the body does not have adequate space, the nervous system uses 

glial cells, notably oligodendrocytes and Schwann cells, to wrap themselves around axons, 

generating myelin sheaths, to maximize propagation velocity. These sheaths help to increase 

membrane resistance by filling up gaps where channels might otherwise leak. 
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CHAPTER -3 

NEURON MODELS 

 

3.1 HODGKIN-HUXLEY NEURON MODEL 

In order to explain the ionic mechanisms underlying the initiation and spread of action 

potentials in the squid giant axon, Alan Hodgkin and Andrew Huxley proposed the model in 

1952.For this work, they were awarded the 1963 Nobel Prize in Physiology or Medicine. 

The Hodgkin-Huxley model, also known as the conductance-based model, is a mathematical 

model of the initiation and spread of action potentials in neurons. An imprecise representation 

of the electrical properties of excitable cells, such as neurons and muscle cells, can be found 

by a set of nonlinear differential equations. The Hodgkin-Huxley (HH) spiking neuron model 

mimics the action potential, ionic channels, and spiking behaviours of the neuron to replicate 

its dynamic properties [3]. It is useful for examining the sensitivity of neurons. In the 

neuromimetic chips, the Hodgkin-Huxley Model with automatic parameter estimation is used 

[4]. 

The original model's concept was that there are three different types of ion channels present in 

the nerve membrane, more specifically the membrane of the squid giant axon. The first, also 

referred to as the leakage channels, has a constant, relatively low conductance. Even though 

they have a low overall conductance, potassium (K) ions have a higher conductance than 

sodium (Na) ions do. The resting membrane potential is primarily caused by leakage channels. 

The action potential is produced by the other two types of ion channels, both of which are 

voltage-dependent, meaning that the voltage across the membrane affects how much current 

flows through them. There are two sets of voltage-dependent channels, one of which is 

permeable to Na ions alone and the other to K ions only. Each voltage-dependent channel can 

be visualised as a tunnel with a few gates placed inside of it sequentially. All the gates in a 

channel must be open simultaneously for that channel to be open and allow ions to flow 

through. The channel is closed if even one gate is closed. The individual gates randomly open 

and close at a high rate, but the chance that a gate will be open known as the open probability 

depends on the voltage applied across the membrane. The gates are believed to function as 

charge-carrying particles at the molecular level, and as a result, their position within the 
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membrane, which determines whether they are open or closed, is influenced by the electrical 

potential across the membrane.  Channel gates comprises of two classes: activation gates, 

whose open probability rises with depolarization, and inactivation gates, whose open 

probability falls with depolarization. The activation variable for a gate is the possibility of that 

gate being open at any given moment. The proportion of gates in the total population of that 

class that are open is defined by the activation variable, which also determines the probability 

that a single gate of that class will be open. Gate classes vary not only in how their activation 

variables change in response to voltage changes but also in how quickly those changes occur.

 

 

Figure1: Schematic representation of Hodgkin Huxley model [2] 

HH Model can be explained with the help of the circuit given above. The semipermeable cell 

membrane serves as a capacitor and a barrier separating the interior of the cell from the 

extracellular fluid. A cell's input current I(t) may add to the capacitor's charge or leak out 

through the membrane's channels if it is introduced. A resistor represents each type of channel. 

The unspecific channel has a leak resistance of R, a resistance of 𝑅𝑁𝑎 for sodium channels, and 

a resistance of 𝑅𝐾 for potassium channels. A battery is used to represent the Nernst potential 

caused by the difference in ion concentration. Each ion type has a different Nernst potential, 

and there are different batteries with the battery voltages  𝐸𝑁𝑎, 𝐸𝐾, and 𝐸𝐿 for sodium, 

potassium, and the random third channel, respectively. According to the law of conservation 

of electric charge, an applied current I(t) may be divided into a capacitive current 𝐼𝐶 that 

charges the capacitor C and additional components 𝐼𝐾 that pass through the ion channels. Thus 

I(t) = 𝐼𝐶 (t) + ∑ 𝐼𝑘𝑘  (t)                                                                          

C
du

dt
 = - ∑ 𝐼𝑘𝑘  (t) + I(t)              
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Where     u - voltage across the membrane  

 ∑ 𝐼𝑘𝑘   -  sum of the ionic currents which pass through the cell membrane   

In short we can describe the HH model by the equation given below  

                                       ∑ 𝐼𝑘𝑘  = 𝑔𝑁𝑎𝑚3h(u-𝐸𝑁𝑎) + 𝑔𝐾𝑛4(u-𝐸𝐾 ) + 𝑔𝐿(u-𝐸𝐿) 

Where  𝑔𝑁𝑎, 𝑔𝐾, 𝑔𝐿 − Voltage dependent conductance  

             𝐸𝑁𝑎, 𝐸𝐾, 𝐸𝐿 − Reversal potentials  

             m, n, h            - Gating variables 

The above-mentioned equations needed the numerical values for the unknown parameters to 

be given in before they could be used. It was necessary to identify the macro properties of the 

channel types such as ionic specificity, maximal conductances, and equilibrium potentials also 

we should determine how many activation and inactivation gates were present in each type of 

channel.  

Amazingly, the HH model has been able to predict and describe a wide range of neuronal 

features. Numerous voltage-dependent channel types in addition to the basic HH pair have been 

included in this model's extensions, which have been utilised extensively in research 

throughout the globe. 

3.2. INTEGRATE AND FIRE NEURON MODEL 

Neuronal dynamics can be thought of as a summation process also known as a "integration" 

process in conjunction with a mechanism that initiates action potentials when a certain voltage 

is reached. Indeed, in studies, the moment the membrane potential reaches a certain threshold 

value from below is frequently characterised as the firing time. By using a formal threshold 𝜗, 

we define the critical voltage for spike initiation. We say that neuron i fires a spike if the voltage 

𝑢𝑖(𝑡), which contains the sum of the effects of all inputs, reaches 𝜗 from below. The firing time 

𝑡𝑖
𝑓
 is determined by the moment the threshold is exceeded. 'Integrate-and-Fire' models are a 

type of neuron model where action potentials are characterised as events. It is not attempted to 

define the appearance of an action potential. An equation that explains the evolution of the 

membrane potential 𝑢𝑖(t) and a mechanism to produce spikes are the two distinct parts of 

integrate-and-fire models that are both required to determine their dynamics. One of the most 
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extensively used models for evaluating the behaviour of neural systems is the integrate-and-

fire neuron model. It explains a neuron's membrane potential in terms of synaptic inputs and 

the injected current that it receives. When the membrane potential hits a threshold, an action 

potential (spike) is created, but the actual changes associated with the membrane voltage and 

conductances generating the action potential are not included in the model. The synaptic inputs 

to the neuron are considered to be stochastic and are described as a temporally homogeneous 

Poisson process. Methods and results for both current synapses and conductance synapses are 

examined in the diffusion approximation, where the individual contributions to the 

postsynaptic potential are small. The focus of this review is upon the mathematical techniques 

that give the time distribution of output spikes, namely stochastic differential equations and the 

Fokker-Planck equation [1]. Because it can be evaluated analytically as well as capable of 

capturing many of the important properties of brain processing, the integrate-and-fire neuron 

model has become established as a classic model for the explanation of spiking neurons. The 

model's core is to separate the neuron's voltage fluctuations into two parts: 

1) Below threshold, it is believed that the membrane operates passively (i.e. lacks voltage-

dependent ion channels) and serves as a leaky capacitor whose voltage decays (or 

"leaks") to a resting level 𝐸𝐿 (short for "E Leak "). 

2)  When the voltage attains the action potential threshold (due to injected currents 

charging up the membrane), the model assumes that the voltage spikes immediately to 

a hyperpolarized level 𝑉𝑠𝑝𝑖𝑘𝑒  and is then immediately reset [1]. 

The two components in the class of integrate-and-fire models are (i) a threshold for spike firing; 

(ii) a linear differential equation to describe the evolution of the membrane potential. Such a 

model is referred to as the Leaky Integrate -and- Fire model [2]. The fundamental electrical 

circuit for a leaky integrate-and-fire model is a capacitor C parallel to a resistor R, which is 

regulated by a current I(t) [5]. The variable 𝑢𝑖 expresses the instantaneous value of membrane 

potential of neuron i. The potential is at its resting value in the absence of any input. The 

potential 𝑢𝑖  will deviate from its resting value if an experimenter injects a current I(t) into the 

neuron or if the neuron gets synaptic signals from other neurons [2]. 
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Figure2: A neuron receives a input current I(t) which inturn increases the electric charge 

inside the cell and the membrane of the cell acts like a capacitor parallel to resistor [2] 

  

Figure3: The cell membrane reacts to a step current (top) with a smooth voltage trace (bottom)[2].

  

When the driving current I(t) disappears, the battery voltage 𝑢𝑟𝑒𝑠𝑒𝑡 determines the voltage 

across the capacitor. We divide the driving current into two components and utilise the rule of 

current conservation to analyse the circuit [2]. 

 I(t)   = 𝐼𝑅 + 𝐼𝐶 

𝐼𝑅 − Resistive current through the resistor ( 𝐼𝑅= 
𝑢𝑅

𝑅
 ) 

𝑢𝑅 − Voltage across the resistor ( 𝑢𝑅 = u - 𝑢𝑟𝑒𝑠𝑒𝑡) 

The second term 𝐼𝐶  changes the capacitor C  
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 𝐼𝐶  = C 
du

dt
 

Thus, we can write from the above equations  

 I(t)  = 
𝑢(𝑡)−𝑢𝑟𝑒𝑠𝑒𝑡

𝑅
 + C

du

dt
 

To this equation by multiplying R to each term we get a time constant 𝜏𝑚= RC thus we 

obtain a standard form  

 𝜏𝑚
du

dt
 = [ u - 𝑢𝑟𝑒𝑠𝑒𝑡] +R I(t) 

The above equation is called the equation of a passive membrane [2]. 

The leaky Integrate and fire neuron model is quite simplified, and numerous components of 

neural dynamics are ignored. In particular, input, which may come from current injection or 

presynaptic neurons, is linearly integrated regardless of the state of the postsynaptic neuron.   

Also, it does not store the memory if the previous spike which is also considered as a limitation 

of the leaky integrate and fire neuron [2]. The integrate and fire neuron model is also 

computationally inefficient also generates the spikes accurately but it helps in the study of a 

large number of neurons which is one advantage of this model. Adaptations are not taken into 

account by the typical leaky integrate-and-fire paradigm. However, if mechanisms of 

adaptation improve the voltage dynamics of the leaky integrate-and-fire model, it can be an 

effective tool for precisely predicting the spike times of cortical neurons [2]. 

 

3.3. IZHIKEVICH NEURON MODEL: 

The Izhikevich neuron model is the model of our interest. This model is developed by combing 

only the effective parts of the HH model and the integrate and fire neuron model making this 

model more biologically plausible as well as computationally effective It is a two-dimensional 

continuous neuron model that is computationally simpler in that it can model tens of thousands 

of neuron networks in a very short amount of time biologically similar to the Hodgkin-Huxley 

model, and much simpler. The Izhikevich neuron model is effective at capturing the dynamics 

of neurons and exhibits a variety of fascinating spiking and bursting characteristics. While the 

cortically inhibitory interneurons are divided into (a) fast spiking (b) low threshold (c) spiking, 

the cortically excitatory neurons are divided into (a) regular spiking (b) inherently bursting (c) 
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chattering. As the system's parameters are changed, the IZH neuron model exhibits all of the 

mentioned spiking and bursting characteristics. The model also explains how thalamo-cortical 

neurons, one of the primary sources of input to the cortex, behave. The model can also display 

the kinetics of resonator neurons. The more details about the Izhikevich neuron model and its 

fundamental equations are described in the next chapter. 
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CHAPTER 4 

IZHIKEVICH NEURON MODEL 

 

 

4.1 INTRODUCTION 

A central topic of theoretical neuroscience research is to obtain computationally and/or 

analytically tractable models for understanding the neural dynamics that underpin brain 

disorders, such as epilepsy or Parkinson’s disease etc. The dynamics associated with such 

functions or disorders are mainly resulted from the coordinated activity of large populations of 

interconnected neurons [1]. Neural mass models rooted in the mean field theory aims to 

describe the collective activity of a neural network in terms of mean-field variables such as the 

population firing rate and mean membrane potential. Spiking neural models involve variables 

closely related to biological measurements and realizations. The QIF model [2] is a popular 

model for large network simulations as it only has one equation for each neuron. Further, it can 

be considered a canonical model as any Class I excitable system close enough to the onset of 

oscillations can be transformed into this form. While the QIF model is useful, there are many 

behaviours of spiking neurons it cannot reproduce. To address this, several authors have 

developed two-dimensional integrate-and-_re model neurons. Examples include the Izhikevich 

neuron and the adaptive exponential (AdEx) neuron. These models display spike frequency 

adaptation (SFA) through a recovery variable and are capable of generating a variety of spiking 

dynamics reported in real neuron. The SFA mechanism can improve neural coding and 

computation at a lower metabolic cost and has also been demonstrated to be important in the 

emergence of network bursting and synchronization. Thus, derivation of mean-field 

descriptions for networks of neurons with SFA would be extremely valuable. Since the 

Izhikevich neuron is the most closely linked to the QIF neuron, it is the ideal candidate to 

explore emergent neurodynamics of neural networks through mean-field descriptions. The 

Izhikevich neuron model consists of a fast subsystem based on the QIF model and a slow 

subsystem modelling the adaptation mechanism. Thus, the Izhikevich network can be 

considered as a QIF network extended by SFA. In this article, we show it is feasible to extend 

the Lorentzian ansatz for the phase model, to the derivation of the exact mean-field models for 

a network of Izhikevich neurons. To achieve a closed set of mean-field equations, we turn to 

the population density approach for spiking neurons. The quasi-steady approximation for the 

continuity equation will be replaced with the Lorentzian ansatz to drop the assumption of 
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separation of time scales. The moment closure approach will be deployed to release the 

dependence of the adaptation variable on the membrane potential to help close the mean-field 

system. 

 

4.2 THE NETWORK SYSTEM 

The Hodgkin-Huxley type neuron model, which is biophysically accurate, was reduced by 

bifurcation analysis [3] to produce the Izhikevich model. With an adaptable quadratic 

mechanism, the central characteristics of neuronal activity are still present. The following 

discontinuous ordinary differential equations eq (1) describe the network model for a 

population of Izhikevich neurons (ODEs). 

𝜈𝑘
,               =   𝜈𝑘( 𝑣𝑘 −  𝛼 ) − 𝜔𝑘+ 𝜂𝑘+ 𝐼𝑒𝑥𝑡+𝐼𝑠𝑦𝑛,𝑘                                               (1a) 

𝜔𝑘
,               = a (b𝜈𝑘 − 𝜔𝑘)                            (1b) 

If 𝜈𝑘≥𝜈𝑝𝑒𝑎𝑘 ,  𝑡ℎ𝑒𝑛 𝜈𝑘←𝜈𝑟𝑒𝑠𝑒𝑡 𝑎𝑛𝑑 𝜔𝑘←𝜔𝑘+𝜔𝑗𝑢𝑚𝑝                                              (1c) 

for k = 1, 2, . . . , N. Here, 𝜈𝑘(t) is the membrane potential of kth neuron and 𝜔𝑘 is the recovery 

current, which serves as an adaptation variable. The parameter 𝜂𝑘 is the intrinsic current while 

𝐼𝑒𝑥𝑡 is the external common current. We will assume that 𝜂𝑘 are heterogeneous and drawn from 

a distribution ℒ(η) defined on (−∞, ∞). The term 𝐼𝑠𝑦𝑛 represents the total synaptic current due 

to the other neurons in the network. When the voltage reaches a cut off value 𝑣𝑝𝑒𝑎𝑘, considered 

to be the peak of a spike, it is reset to the value 𝑣𝑟𝑒𝑠𝑒𝑡 . At the same time, the adaptation variable 

jumps by an amount wjump, which affects the after-spike behavior. Neurons in the network 

are connected by synapses modelled by 

𝐼𝑠𝑦𝑛,𝑘           =  𝑔𝑠𝑦𝑛𝑠 ( 𝑒𝑟  − 𝜈𝑘 )        (2) 

where er the reversal potential and g is the maximum synaptic conductance. The synaptic gating 

variable s lies between 0 to 1, and represents the proportion of ion channels open in the 

postsynaptic neuron as the result of the firing in presynaptic neurons. The mechanism of 

synaptic transmission can be formally described by a linear system of ODEs with a sum of 

delta pulses corresponding to the times a neuron fires a spike. For example, the single 

exponential synapse is modeled by 

𝑠 ,                =    - 
𝑠

𝑇𝑠
   + 

𝑠𝑗𝑢𝑚𝑝

𝑁
  ∑ ∑ 𝛿

𝑡𝑘
𝑗

<𝑡
𝑁
𝑘=1  (t - 𝑡𝑘

𝑗
 )     (3) 
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where δ(t) is the Dirac delta function, and represents the time of the 𝑗𝑡ℎ spike of the 𝑘𝑡ℎ neuron 

 

4.3 MEAN-FIELD REDUCTION 

 The network model described in the previous section is too complicated to perform tractable 

analysis especially when the number of neurons is large. In this section, we will develop a low-

dimensional mean-field model to approximate the behaviour of the full network described by 

(1)-(3) within the thermodynamic limit, i.e., when N → ∞. The mean-field approximation is 

essentially a technique that borrows concepts and methods from statistical physics, e.g., the 

population density approach [4], the continuity equation (or the Fokker-Planck equation when 

the system is subject to noise) [1, 5]. We will show how to describe some vital macroscopic 

variables such as the population firing rate and how to derive the reduced macroscopic 

dynamics, cast as ODEs, through step-by-step assumptions. 

 

4.4 GENERAL MEAN-FIELD DESCRIPTION  

We define the population density function ρ(t, 𝜈, 𝜔, η) [5,6] as the density of neurons at a point 

(𝜈, 𝜔) in phase space and parameter η at time t. In the limit as N → ∞, the principle of 

conservation mass leads to the following evolution equation for the density function, that is, 

the continuity equation, 

∂

∂t
𝜌(𝑡, 𝜈, 𝜔, 𝜂) + ∇. 𝒯(𝑡, 𝜈, 𝜔, 𝑠, 𝜂)  = 0     (4) 

The probability flux ρ is intuitively the mass flow rate along a specific direction in phase space 

[6]. 

Next, we describe several macroscopic observables in terms of mean-field description, which 

are extremely useful in understanding neural activities underlying brain function. The 

population firing rate is the flux through the threshold 𝜈𝑝𝑒𝑎𝑘 over the entire range of w in phase 

space and η in parameter space, defining 

( ) ( ) 
 

ddsvtJtr peak

v ,,,, =        (5) 

The mean membrane potential is defined as 
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( )   =
 


v

ddvdvtvtv ),,,(           (6) 

Additionally, we define the mean adaptation current over the population as 

( ) ( ) 
 

dvddvtt
v

  = ,,,        (7) 

Then, we approximate its derivative with respect to t, yielding 

( ) ( ) 
 

 ddsvtJvG peak

v

jump ,,,,,'  +      (8) 

Further, considering the linearity of G function with respect to v and w, and the description of 

the population firing rate in terms of flux, we finally derive ODE describing the evolution of 

the mean adaptation variable and the synaptic dynamics of the firing rate. 

 

4.5 DENSITY FUNCTION IN CONDITIONAL FORM 

In this section, we take advantage of the population density approach and the moment closure 

assumption to reduce the dependence between the macroscopic variables [7]. We begin by 

taking the population density function in the conditional form and then the population firing 

rate in the general expression (7) is described by the conditional probability as 

      (9)                                                                          

  

Next, we assume   

⟨𝜔|𝜈, 𝜂⟩   =  ⟨𝜔|𝜂⟩                 (10) 

which corresponds to a first order moment closure assumption. Then, we have 

               (11) 

Similarly, the mean membrane potential is rewritten as 

                 (12) 
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where we use the normalization condition on the marginal density of 𝜔. Furthermore, we 

integrate the general continuity equation (4) with respect to 𝜔 and use (13), yielding 

               (13) 

To obtain this expression, we used the normalization condition on the marginal density of 

𝜔 and the fact that the flux vanishes on the boundary ∂𝜔. Finally, using the moment closure 

assumption (15), we obtain the resulting modified continuity equation 

𝜕

𝜕𝑡
𝜌𝜈(t,𝜈|𝜂) + 

∂

∂v
[ 𝐺𝜈(𝜈,〈𝜔|𝜂〉, s, 𝜂)𝜌𝜈(t,𝜈| 𝜂)] = 0             (14) 

 

4.6 LORENTZIAN ANSATZ  

In this section, we will further simplify the expressions of the macroscopic variables r(t) and 

〈𝜈(𝑡)〉 and derive the mean-field approximation for the Izhikevich network by employing the 

Lorentzian ansatz [2]. To begin, we assume that the conditional probability 𝜌𝜈(t, 𝜈|𝜂) and hence 

can be written in the form of Lorentzian distribution as follows, 

𝜌𝜈(t,𝜈| 𝜂) = 
1

𝜋

𝑥(𝑡,𝜂 )

[𝜈−𝑦(𝑡,𝜂)]2+ 𝑥2(𝑡,𝜂)
              (15) 

where x(t, 𝜂) and y(t, 𝜂) are two time-dependent parameters defining half-width at half-

maximum and location of the center, respectively. Moreover, y(t, 𝜂) is defined via the Cauchy 

principal value since the Lorentz distribution only has a mean in principal value sense. 

 

4.7 HETEROGENEITY WITH LORENTZIAN DISTRIBUTION 

Further derivation of the mean-field description in terms of the macroscopic observables 

depends on the distribution of the heterogeneous parameter, 𝜂 [8]. Specifically, we choose the 

heterogeneous current 𝜂 to have a Lorentzian distribution with center 𝜂 and half-width at half-

maximum ∆ 𝜂. Then, we apply the residue theorem to compute the integrals in to obtain 

r(t)= 
1

𝜋
x(t,𝜂̅ - i∆𝜂)                   (16) 

〈𝜈(𝑡)〉= y (t,𝜂̅ - i∆𝜂)                   (17) 
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If ℒ (𝜂) has n poles in the lower half 𝜂-plane, one can readily obtain n sets of complex-valued 

mean-field ODEs. Recalling that we already obtained the dynamical system for the mean 

adaptation current and synapses, we obtain the reduction of the network of Izhikevich neurons 

(1)-(3) to the following the mean-field system of ODE 

𝒓,              =
 ∆𝜼

𝝅⁄  + 2r⟨𝒗⟩ - (𝜶 +𝒈𝒔𝒚𝒏s)r                  (18) 

⟨𝒗⟩,                 = ⟨𝒗⟩𝟐- 𝜶⟨𝒗⟩ -⟨𝝎⟩ +𝜼̅ +𝑰𝒆𝒙𝒕+𝒈𝒔𝒚𝒏s(𝒆𝒓-⟨𝒗⟩)-𝝅𝟐𝒓𝟐            (19) 

⟨𝝎⟩,          = a(b⟨𝒗⟩ -⟨𝝎⟩) + 𝝎𝒋𝒖𝒎𝒑r                                                                         (20) 

𝒔,             = -𝒔 𝝉𝒔⁄  + 𝒔𝒋𝒖𝒎𝒑r                             (21) 

 

4.8 NUMERICAL ANALYSIS   

We now numerically examine the dynamics of the mean-field model and demonstrate its 

validity in terms of reproducing the macroscopic dynamics of the network of Izhikevich 

neurons. We consider an all-to-all coupled network with synapses governed by the single 

exponential model [4,7,9]. 

The parameter values used in all simulations can be found in Table 1 

                                    

PARAMETER VALUE PARAMETER VALUE 

𝜶 0.6215 𝜏𝑠 2.6 

𝒈𝒔𝒚𝒏 1.2308 𝑒𝑟 1 

a 0.0077 b -0.0062 

𝒔𝒋𝒖𝒎𝒑 1.2308 𝜔𝑗𝑢𝑚𝑝 0.0189 

𝝂𝒑𝒆𝒂𝒌 200 𝜈𝑟𝑒𝑠𝑒𝑡 -200 

 

Table 1: Dimensionless parameters for Izhikevich neurons 
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We begin with the bifurcation analysis of the mean-field model (18-21).  Fig. 1 shows how the 

population firing rate r qualitatively changes as the mean intrinsic current 𝜂̅ is varied. There 

are two subcritical Andronov-Hopf bifurcations (HP) at 𝜂̅ = 𝜂̅ HP ≈ 0.191 and 0.07 

respectively.   The system displays two small ranges of bistability between the Hopf and SNLC 

bifurcations. The stable limit cycles (green dots) correspond to bursting solutions in the full 

network and stable equilibrium points (red lines) correspond to the tonic firing. This is clearly 

reflected in the time series of macroscopic in Fig. 2 and Fig. 3. The mean-field equations (18-

21) exactly predict the behaviour of the full network, including the damped oscillations and the 

frequency of stable oscillation [4,7,9]. Prior work has shown that population bursting in the 

networks of Izhikevich neurons is due to a balance between the inputs (intrinsic and external 

applied currents and synaptic inputs), which cause the neurons to spike, and the slow adaptation 

current, which can terminate spiking [10]. For a given level of adaptation there must be 

sufficient input, but not too much. Hence the bursting in Fig. 1 occurs when the mean intrinsic 

current 𝜂̅  is not too small and not too large. 

 

 

         

 

         

 

        r 

                                                                         

 

                          

𝜼̅ 

Figure 1 Bifurcation diagram of the mean-field model with respect to the mean intrinsic current 𝜼̅. The 

red (black) lines correspond to stable (unstable) equilibrium points and green (blue) dots corresponds 

to stable (unstable) limit cycles. 
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    Figure 2 

 Figure 3  

Fig 2 & Fig. 3: Comparison of the temporal behaviour of the network of Izhikevich neurons and the 

corresponding mean-field model when 𝜂̅= 0.25 and 𝜂̅=0.12. First row of panels are the raster plots of 

300 randomly selected Izhikevich neurons from the N=104 in the population. Other rows of panels 

show, respectively, the population firing rate r(t), mean membrane potential 〈𝑣(𝑡)〉 and mean 

adaptation variable 〈𝜔(𝑡)〉 obtained from simulations of the full network (blue) and the mean-field 

model (red). Parameters: 𝛥𝜂=0.02 and 𝐼𝑒𝑥𝑡=0 
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Fig. 4 shows the dynamics of the network of Izhikevich neurons compared with the corresponding mean-

field model when 𝜂̅= 0.12 and 𝛥𝜂= 0.02. First panel is the raster plot of the spiking activity. The 

instantaneous population firing rate of the network and the mean-field model are depicted in blue and 

red respectively. Stimulus (t) is shown in the last panel. At time t= 650 a current =0.1 is applied to all 

neurons 

 

4.9 EXTENSION TO TWO-COUPLED POPULATIONS 

A large-scale neural network can also be thought of as numerous connected groups when 

different properties of the network's cells are taken into account. For example, neurons are 

classified as excitatory or inhibitory depending on the type of synapses they create, as in 

[11,12], or as strongly or weakly adapting based on the amount of spike frequency adaptation 

they exhibit, as in [9,13]. In this section, we analyse a network of all-to-all coupled strongly 

adapting neurons (population p) and weakly adapting neurons (population q). Izhikevich model 

characterizes each neuron as 

 

syn
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ext

mkmkmmkmkmkm IIvvv ,,,,,, )( +++−−=                   (22)
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where m = p, q represents the two populations with 𝑁𝑝 and 𝑁𝑞 cells, respectively. The subscript 

{m, k} denotes the kth neuron in population m. The subscript with only {m} represents the 

corresponding parameter is homogeneous within the population m, but heterogeneous across 

the two populations. We require two maximal synaptic conductances, 𝑔𝑝,𝑝
𝑠𝑦𝑛

 and 𝑔𝑞,𝑞
𝑠𝑦𝑛

 within 

the populations and two, 𝑔𝑝,𝑞
𝑠𝑦𝑛

and 𝑔𝑞,𝑝
𝑠𝑦𝑛 

between the populations. Then, we have 

)()]()1([)( ,,,,, kp

r

pppkp

r

pq

syn

qpp

syn

pp

syn

kp veSGvesgkskgtI −−−+=              (25)
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qqp
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kq veSGvesgkskgtI −−−+=               (26) 

where k =
Np

Np+Nq
 is the proportion of strongly adapting neurons in the network and 

𝑠𝑝(respectively, 𝑠𝑞 ) represents the proportion of open synapses due to neurons in the strongly 

(respectively, weakly) adapting population. These gating variables are governed by the single 

exponential synapse model 
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We apply Lorentzian ansatz for two populations like that and of the previous and assuming the 

Lorentzian distribution of heterogeneous currents for two populations as 

.,,
)()(

1
)(

22
qpmL

mmm

m
m =

+−


=






                (28) 

In case of two population, we obtain eight differential equations. Three differential equations 

each for both population and two for the synaptic conductances. 

 

Three differential equations for the population p with strong adaptation is given by  

𝑟𝑝
′ = 𝛥𝑝

𝜂
/𝜋 + 2𝑟𝑝⟨𝑣⟩𝑝 − 𝑟𝑝[𝐺𝑝𝑆𝑝 + 𝛼𝑝]                   (29)  

⟨𝑣⟩𝑝
′

= ⟨𝑣⟩𝑝
2 − 𝛼𝑝⟨𝑣⟩𝑝 − ⟨𝜔⟩𝑝 + 𝜂𝑝 + 𝐼𝑝

𝑒𝑥𝑡 + 𝐺𝑝𝑆𝑝[𝑒𝑝
𝑟 − ⟨𝑣⟩𝑝] − 𝜋2𝑟𝑝

2                        (30) 

p

jump

ppppp rvba
p

 +−=


][                  (31) 
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And for population q with weak adaptation is given by  

][2/ qqqqqqqq SGrvrr  +−+=                  (32)

222
][ pp

r

ppp

ext

ppppppp
rveSGIvvv  −−+++−−=


             (33)

p

jump

ppppp rvba
p

 +−=


][                  (34) 

Now they couple through synaptic currents and is given by 

p

jump

p

s

ppp rsss +−= /                    (35) 

q

jump

q

s

qqq rsss +−= /                    (36) 

Most parameters used in two-coupled population is same as that of one population. The only 

parameter that differs are after-spike jump sizes  𝜔𝑚
𝑗𝑢𝑚𝑝

 and time constant 𝑎𝑚 

PARAMETER VALUE PARAMETER VALUE 

𝝎𝒑
𝒋𝒖𝒎𝒑

 0.0189 𝜔𝑞
𝑗𝑢𝑚𝑝

 0.0095 

𝒂𝒑 0.0077 𝑎𝑞 0.077 

𝒈𝒑,𝒑
𝒔𝒚𝒏

 1.2308 𝑔𝑞,𝑞
𝑠𝑦𝑛

 1.2308 

𝒈𝒑,𝒒
𝒔𝒚𝒏

 1.2308 𝑔𝑞,𝑝
𝑠𝑦𝑛

 1.2308 

𝑰𝒑
𝒆𝒙𝒕 0 𝐼𝑞

𝑒𝑥𝑡 0 

𝑵𝒑 8000 𝑁𝑞 2000 

 

Table 2: Dimensionless parameters for the two-couple population 
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Fig.5 This network consists of 8000 strongly adapting neurons of population p. This is the 

behaviour of population when 𝜂̅ = 0.08. The first row of panels shows the rastor plots of the 

spiking activity, the green line shows the population p and the red shows the corresponding 

variables in mean-field models. Parameters used are given in the table above and 𝛥𝑝
𝜂

 = 0.02. 

 

The figure shows that the dynamics of the two-population network are exactly described by the 

reduced mean-field description in the tonic firing (equilibrium points) and bursting (periodic 

orbits) regimes.  The mean-field model for the network of two coupled Izhikevich populations 

involves more complicated bifurcations compared with that of the single-population network 

of strongly adapting Izhikevich neurons. Bifurcation analysis reveals that when the proportion 

of strong adapting neurons is κ = 0.8, the sequence of bifurcation is largely the same as when 

there is a single population of strongly adapting neurons 
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Fig.6 This network consists of 2000 strongly adapting neurons of population q. This is the 

behaviour of population when 𝜂̅ = 0.08. The first row of panels shows the rastor plots of the 

spiking activity, the blue line shows the population p and the red shows the corresponding 

variables in mean-field models. Parameters used are given in the table above and 𝛥𝑞
𝜂

 = 0.02. 
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Fig.7 This shows the variation of mean-adaptation variable with time for 8000 neurons of population 

p and 2000 neurons of population q. The green and blue lines show the population p and q respectively. 

The red line shows the corresponding mean-field variable for each population  

 

 

 

     𝑟𝑝 

 

 

 

     𝜂̅𝑝= 𝜂̅𝑞= 𝜂̅ 

Fig 8. Figure shows the qualitative changes of the population firing rate 𝑟𝑝 with respect to 𝜂̅𝑝= 𝜂̅𝑞= 𝜂̅ 

when 𝜅 is 0.5 

This figure shows the one parameter bifurcation when the 𝜅 value is reduced to 0.5. The red 

and black lines correspond to the stable and unstable equilibrium points respectively. When 

𝜅 = 0.5 the system undergoes two saddle-node bifurcation and one Andronov-Hopf 

bifurcation. We can also see that the stable period behaviour is now initiated by what appears 

to be a saddle-node on an invariant circle bifurcation or homoclinic bifurcation and terminated 

by a supercritical Andronov-Hopf bifurcation at 𝜂̅𝑝 = 𝜂̅𝑞 ≈ 0.05. 

 

 

          𝑟𝑝 

 

 

      𝜅 

Fig 9. Indicates that stable bursting behaviour is more likely in a network with the higher proportion 

of strongly adapting neurons  
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4.10 DISCUSSION 

We have derived a mean field model for a network of heterogeneous Izhikevich neurons which 

display spike frequency adaptation through a recovery variable. The mean-field models [2,10] 

have exhibited qualitative and quantitative agreement with the full network. The parameter 

values used in the numerical examples are a nondimensionalization of parameter values fit to 

actual neuronal data collected in the literature. Bifurcation analysis for the mean field system 

can be used to make predictions about the biological networks being studied. For example, how 

to understand the emergence of bursting in the CA3b region of the hippocampus based on 

experimental findings of neurons which display different amounts of spike frequency 

adaptation.  
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CHAPTER - 5 

DYNAMICS OF MEMRISTIVE IZHIKEVICH NEURON 

MODEL 

 

5.1 INTRODUCTION 

A memristor is a two-terminal passive electrical component that functions as a basic non-linear 

circuit element that connects charge and magnetic flux. The memristor is a promising device 

in a wide range of analogue and digital applications, including memory chips, logic circuits, 

and neural networks [1]. 

                                                 Figure 5.1: Figure of memristor [12] 

 

Electronic circuits are currently constructed using three essential passive elements: resistor, 

capacitor, and inductor. The fourth essential constituent, known as the memristor, has just lately 

developed [2]. A memristor is a type of electronic component that can store and regulate 

electrical charge and current flow. It is short for "memory resistor" and was first theorized by 

Leon Chua in 1971 as the fourth fundamental passive circuit element, alongside resistors, 

capacitors, and inductors. Memristors have a unique property where their resistance changes 

in response to the amount of current that has already passed through it, meaning they can 

"remember" the amount of charge that has previously flowed through them. This makes them 

useful for building electronic circuits that can mimic the behavior of synapses in the human 

brain, leading to the development of new forms of artificial intelligence and advanced 

computing technologies. Members of an HP Lab submitted a report demonstrating the 

successful realisation of a nanoscale electronic component with observed physical properties 

that can be explained by the memristor theory. As shown in Figure 2, the HP memristor is a 
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solid state device composed of two Platinum electrodes and a nanometer-scale TiO2 thin film 

having a doped and undoped area. 

 

                                           

 

                                      Figure 5.2: Titanium dioxide memristor [13] 

 

The newly developed two-terminal passive element is known as a memristor because it exhibits 

characteristics of both a memory and a resistor. Memristors have demonstrated a number of 

exceptional qualities, including superior CMOS technology compatibility, a small device area 

for high-density on-chip integration, non-volatility, quick speed, low power dissipation, and 

great scalability [3]. A memristor's resistance, one of its fundamental characteristics, is 

influenced by the strength, direction, and duration of the voltage applied across its terminals. 

When the applied voltage is turned off, the memristor remembers its most recent resistance 

value and stores it till the next time the applied voltage is switched on. Moreover, it possesses 

additional qualities including pinched hysteresis and dynamical-negative resistance that might 

significantly affect nanoelectronics.  

Since 2008, several applications for memristors have been suggested. Memristor-based 

Content Addressable Memories (MCAMs), which use a mix of memristor and MOS devices 

in memory chips, and Resistive Random Access Memory (RRAM) cell designs may both make 

use of memristors. To reduce the size and complexity of neuromorphic circuits, neural 

networks can effectively use the memristor's ability to "memorise" the current that passes 

through it and its direction. In the realm of logic circuits, a brand-new memristor-based IMPLY 

logic circuit was created. The ability to produce memristor-based logic on the same chip as 

memory cells makes it special.  

 



Page | 41  
 

Memristors (FPGAs) are also used in the design of crossbar-arrays, which are used in the 

switching blocks of Field Programmable Gate Arrays [4]. Thus, despite it taking a long time 

for memristors to go from a purely theoretical derivation to a practical implementation, these 

devices are now widely employed in non-volatile random-access memory and machine 

learning applications. 

The non-volatile memristor's conductance is controlled by ion mobility, which is similar to 

how biological synapses and neurons function. These benefits have made the memristor an 

inevitable option as a component for both synthetic and natural neural networks. 

 

5.2 MEMRISTOR PROPERTIES 

5.2.3 Flux-Charge Relation 

The flux and charge connection is stated as a function of charge in a charge-controlled 

memristor, whereas the relationship is expressed as a function of flux in a flux-controlled 

memristor [5]. Resistance is the equivalent of a linear (constant) memristor. The device 

behaviour is more complex if the relationship is nonlinear, thus the parameter in the memristor 

connecting q and φ is not constant [6]. 

The missing component between flux and charge is memristance M.The memristor is said to 

be charge-controlled with a memristance ‘M (q)’ given by: 

M(q)=  
dφ

dq
                                                  (1) 

The memristor is said to be flux-controlled with a memductance ‘W(φ)' given by : 

       W(q) =
dq

dφ
           (2) 

Therefore, it can be derived as: 

 ν = M(q). i           (3) 

i = 𝑊(𝜑). 𝜈           (4) 

M(q) is theoretically a charge-controlled resistance since memristance has the same unit (Ohm) 

as resistance. The unit of conductance is likewise included in the memductance [7]. 

Memristance is the inverse of memductance,  
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M = 1
W(φ)⁄      (5) 

A growing trend that is monotonic defines the q-φ curve. The slope of this curve (q) is defined 

as the memory M. As a result, M(q)≥0 is always positive for the memory resistance. The 

passivity condition states that a memristor is a passive element if and only if the memristance 

has a non-negative value.  

The memristor's immediate power output is provided by: 

                                                     P(i) = M(q)i(t)2    (6) 

passive device. This implies that it can only use power; it cannot create or store energy. Like a 

resistor, a memristor is completely dissipative [1]. 

 

Figure 5.3 Three examples of charge-flux characteristics of the memristor, which all have 

monotonically increasing characteristics [13]. 

5.2.2 Current-Voltage relation  

The most crucial aspect of a memristor is its current-voltage characteristic, which displays a 

pinched hysteresis loop. The memristor is regarded as a basic component since the other three 

basic components cannot be combined to provide the I-V characteristic of the memristor [4]. 

Applying a periodic signal to a memristor will cause the current to be zero if the voltage is zero 

and vice versa. Therefore, the origin curve is always crossed by the voltage v(t) and current i(t) 

curves. The geometry of the pinched hysteresis loop will vary with frequency. As the frequency 

rises, the hysteresis loop contracts. If the frequency is raised to infinity, the memristor will act 

like a regular resistor [1].  
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Changes in the I-V characteristic's slope show a transition between different resistance states, 

with the resistance changing from positive to negative as the applied  

Figure 5.4 Current-voltage characteristics of the memristor [14]. 

voltage changes amplitude. The symmetrical voltage bias, which can compress to a straight 

line at high frequencies, causes double-loop I-V hysteresis [2]. 

 

5.2.3 Resistance – Time Relation 

 

Fig. 4.5 shows the memristor's resistance versus time characteristic.The range of the 

instantaneous resistance is [𝑅𝑂𝑁, 𝑅𝑂𝐹𝐹]. The applied voltage affects the resistance values. The 

memory resistance reaches its extreme (highest or minimum) values for a sine-wave voltage 

with period T during the following time intervals:  

t = (2n + 1)T/2  [8].                     

 Figure 5.5 Resistance Versus Time plot of the memristor [15] 
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5.2.4 Resistance – Voltage Relation 

 

Fig. 4.6 shows the resistance vs voltage characteristic. Initially, the memristor has a voltage of 

0 volts, a current of 0 amps, and a resistance of 𝑅𝑖 [8]. 

Additionally, the sign of v(t) determines the memristance value, or resistance [Ri,𝑅𝑂𝐹𝐹] for 

v(t)<  0 and [ 𝑅𝑂𝑁,𝑅𝑖] for v(t)>0. This is thus because resistance increases as voltage increases, 

but current follows voltage. The resistance reaches its peak,𝑅𝑂𝐹𝐹 , when the voltage falls to 

zero [2]. 

 

 

 

 

Figure 5.6 Resistance Versus Voltage plot of the memristor [15].  
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5.3 EXTENSION OF IZHIKEVICH NEURON MODEL 

5.3.1 The Network System 

The Izhikevich neuron model which was formed by combining the best parts of Hodgkin-

Huxley model and the integrate and fire neuron model was studies and the bifurcation was 

produced [9] This model is now extended by adding an additional memristive variable 𝜙 to the 

existing fundamental equations of the model. Now the following discontinuous ordinary 

differential equations (ODEs) define the network model for a population of Izhikevich neurons: 

𝜈𝑘
,               =   𝜈𝑘( 𝑣𝑘 −  𝛼 ) − 𝜔𝑘+ 𝜂𝑘+ 𝐼𝑒𝑥𝑡+𝐼𝑠𝑦𝑛,𝑘- 𝑘1(𝛼1𝜙2 + 𝛽𝜙 + 𝛾) 𝜈𝑘          (7a) 

𝜔𝑘
,               = a (b𝜈𝑘 − 𝜔𝑘)                (7b) 

𝜙´     = 𝑘2ν - 𝑘3ϕ                  (7c) 

If 𝜈𝑘≥𝜈𝑝𝑒𝑎𝑘 ,  𝑡ℎ𝑒𝑛 𝜈𝑘←𝜈𝑟𝑒𝑠𝑒𝑡 𝑎𝑛𝑑 𝜔𝑘←𝜔𝑘+𝜔𝑗𝑢𝑚𝑝  [10]                       (7d) 

The recovery variable 𝜔𝑘 and the reset condition is same as that of the Izhikevich neuron 

model. But the membrane potential   𝜈𝑘 is changed and an additional term called the magnetic 

flux term is added to the fundamental equation. 

The neurons are connected together by synapses which is given by 

𝐼𝑠𝑦𝑛,𝑘           =  𝑔𝑠𝑦𝑛𝑠 ( 𝑒𝑟  − 𝜈𝑘 )  [10]        (8) 

Single exponential synapse is given by  

𝑠 ,                  =    - 
𝑠

𝑇𝑠
   + 

𝑠𝑗𝑢𝑚𝑝

𝑁
  ∑ ∑ 𝛿

𝑡
𝑘
𝑗

<𝑡
𝑁
𝑘=1  (t - 𝑡𝑘

𝑗
 ) [10]     (9) 

Both equation 3 and 4 is also mentioned in the previous chapter of Izhikevich neuron model. 

Eq (1=3) are the dimensionless parameters which helps in exploring the neurodynamics 

mathematically and numerically. 

5.3.2 General Mean-field Description 

In the limit N→ ∞ the population density function becomes 𝜌(𝑡, 𝜈, 𝜔, 𝜂, 𝜙) which gives the 

density of neurons. The continuity equation is given by  

∂

∂t
𝜌(𝑡, 𝜈, 𝜔, 𝜂, 𝜙)  + ∇.𝒥 (t,ν,ω,η,ϕ)  = 0 [10]                (10) 
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Where the probability flux will be defined as  

𝒥 ( t,ν,ω,η,ϕ )  = (

𝒥𝜈(𝑡, 𝜈, 𝜔, 𝜂, 𝑠, 𝜙)

𝒥𝜔(𝑡, 𝜈, 𝜔, 𝜂)

𝒥𝜙(𝑡, 𝜈, 𝜙)

) 

  = (

𝐺𝜈(𝜈, 𝜔, 𝑠, 𝜂, 𝜙)

𝐺𝜔(𝜈, 𝜔)

𝐺𝜙(𝜈, 𝜙)

)ρ(𝑡, 𝜈, 𝜔, 𝜂, 𝜙) 

  = 

(

𝜈(𝜈 − 𝛼) − 𝜔 + 𝜂 + 𝐼𝑒𝑥𝑡 + 𝑔𝑠𝑦𝑛𝑠(𝑒𝑟 − 𝜈) −  𝑘1(𝛼1𝜙2 + 𝛽𝜙 + 𝛾) 𝜈𝑘

𝑎(𝑏𝜈 − 𝜔)
𝑘2𝜈 − 𝑘3𝜙

)ρ(𝑡, 𝜈, 𝜔, 𝜂, 𝜙) 

                       (11) 

Boundary condition for the flux is given by  

𝒥𝜈(𝑡, 𝜈𝑝𝑒𝑎𝑘 , 𝜔, 𝑠, 𝜂, 𝜙) = 𝒥𝜈(𝑡, 𝜈𝑟𝑒𝑠𝑒𝑡, 𝜔 + 𝜔𝑗𝑢𝑚𝑝,𝑠, 𝜂, 𝜙)     

The population firing rate will be thus rewritten as  

   

( )

( ) 







dddsvtJ

dddsvtJtr

peak

v

v

vv peak

,,,,

,,,,,lim)(

,





=
→

                  (12) 

Mean membrane potential, 

( ) ( ) 
 

ddvddvtvtv ,,,, =                                       (13) 

Mean adaptation variable, 

( ) ( ) 
 

dvdddwvtt
v

 = ,,,,                  (14) 

Similarly, we can define the mean magnetic flux term as  

( ) ( ) dvdddvtt
v


 

 = ,,,,  

Derivating Eq(9) w.r.t t we get  
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    (15) 

 

𝐺𝜔() function's linearity with respect to v and w is being taken into consideration and the 

population rate of firing defined in terms of flux and finally we get the ODE for the evolution 

of mean adaptation variable as  

〈𝜔〉´   = 𝐺𝜔(〈𝜈〉, 〈𝜔〉) + 𝜔𝑗𝑢𝑚𝑝r(𝑡) +  𝐺𝜙(〈𝜈〉, 〈𝜙〉) 

  = a(𝑏〈𝜈〉 − 〈𝜔〉)+𝜔𝑗𝑢𝑚𝑝r(𝑡)+𝑘2〈𝜈〉 − 𝑘3〈𝜙〉                (16) 

The Synaptic dynamics is rewritten in the terms of r(t) as  

𝑠´   = - 
𝑠

𝜏𝑠
 + 𝑠𝑗𝑢𝑚𝑝r(𝑡) [10]                                    (17) 

The final mean-field model for the network of Izhikevich neurons includes the two equations 

(11) and (12) as a fundamental element. They are reliant on the mean membrane potential 

〈𝜈(𝑡)〉 and the population firing rate r(t) both are tow macro-variables. 

5.3.3 Density in conditional form  

Here we consider the population density function in the conditional form as same as that the 

Izhikevich neuron model. With the same assumption we describe the population firing rate in 

terms of conditional probability 𝜌(𝑡, 𝜈|𝜂) as  

( ) ( ) ( ) ( ) 


dsvvvGvtLtr vv

vv peak

,,,,,,,lim →
=                             (18) 

Also, we assume  

⟨𝜔|𝜈, 𝜂⟩  = ⟨𝜔|𝜂⟩ [10] 

⟨𝜙|𝜈, 𝜂⟩  = ⟨𝜙|𝜂⟩             (19) 

which corresponds to a first order moment closure assumption [11]. We now have 

( ) ( ) ( ) ( ) 


dsvGvtLtr vv

vv peak

,,,,lim →
=                 (20) 
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Similarly, we can rewrite the mean membrane potential using normalization condition on the 

marginal density of 𝜔, 

∫ 𝐿(𝜂)
𝜂

∫ 𝑣
𝑣

𝜌𝑣(𝑡, 𝑣|𝜙, 𝜂) ∫ 𝜌𝜙
𝜙

(𝑡, 𝜙|𝑣, 𝜂)𝑑𝜙𝑑𝑣𝑑𝜂      (21) 

Integrate the continuity equation w.r.t. ω and we using the population density in 

conditional form as in the Izhikevich neuron model we get 

∂𝜌𝜈

∂t
(𝑡, 𝜈|𝜙, 𝜂) + 𝜕

𝜕𝜈
[𝐺𝜈(𝜈, ⟨𝜔|𝜈, 𝜂⟩⟨𝜙|𝜈, 𝜂⟩, 𝑠, 𝜂)𝜌𝜈(𝑡, 𝜈|𝜙, 𝜂)𝜌𝜙(𝑡, 𝜙|𝜈, 𝜂)]  = 0              (22) 

Here the flux vanishes in the boundary 𝜕𝜔. 

The modified continuity equation using the moment closure assumption as in the equation (15) 

∂𝜌𝜈

∂t
(𝑡, 𝜈|𝜂) +  𝜕

𝜕𝜈
[𝐺𝜈(𝜈, ⟨𝜔|𝜂⟩⟨𝜙|𝜂⟩, 𝑠, 𝜂)𝜌𝜈(𝑡, 𝜈|𝜙, 𝜂)𝜌𝜙(𝑡, 𝜙|𝜈, 𝜂)]    = 0             (23) 

Steady state of solution of the solution of the system  

𝜌̅𝜈(𝜈|𝜂)𝜌̅𝜙(𝜙|𝜈, 𝜂)   ∝ 
1

𝜈(𝜈−𝛼)−⟨𝜔|𝜂⟩̅̅ ̅̅ ̅̅ ̅̅ ̅+ ⟨𝜙|𝜂⟩̅̅ ̅̅ ̅̅ ̅̅ ̅+𝜂+𝐼𝑒𝑥𝑡+𝑔𝑠𝑦𝑛𝑠̅(𝑒𝑟−𝜈)−𝑘1(𝛼1𝜙2+𝛽𝜙+𝛾) 𝜈𝑘

             (24) 

Where ⟨𝜔|𝜂⟩̅̅ ̅̅ ̅̅ ̅, ⟨𝜙|𝜂⟩̅̅ ̅̅ ̅̅ ̅, 𝑠̅ are the steady state values of ⟨𝜔|𝜂⟩, ⟨𝜙|𝜂⟩, 𝑠 

5.3.4 Lorentzian Ansatz 

Expression for macroscopic variables 𝜈(𝑡) 𝑎𝑛𝑑 𝑟(𝑡) are simplified and Using the Lorentzian 

approach, we obtain the mean-field approximation for the Izhikevich network. Conditional 

probability  𝜌𝜈(𝑡, 𝜈|𝜂) in the form of Lorentzian distribution  

𝜌𝜈(𝑡, 𝜈|𝜂)  = 
1

𝜋

𝑥(𝑡,𝜂)

[𝜈−𝑦(𝑡,𝜂)2+ 𝑥2(𝑡,𝜂)]
 [10]                 (25) 

Where  𝑥(𝑡, 𝜂) = Half width half maximum 

 y(𝑡, 𝜂) = location of the center  

y(𝑡, 𝜂) is the reason behind the only mean in principal value in the Lorentz distribution. 

Therefore, mean membrane potential can be expressed in terms of y(𝑡, 𝜂) as  

( ) ( ) ( ) 


dLtytv = ,   [10]            (26) 

Under the given conditions as mentioned in the Izhikevich neuron model the population firing 

rate defined in the eq (15) can also be expressed in the form of Lorentzian coefficient as  
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( ) ( ) ( ) ,,,,lim, svGvttr vv

vv peak→
=                 (27) 

( )
( )  ( )

( ) ( ) peakrsynextpeakpeak

peak
v

vesgIvv
txtyv

tx

peak

−+++−−−
+−

=
→






 ,,

,1
lim

22
  

Then the total firing rate can also be expressed as  

                 (28) 

 

Now the Izhikevich neuron network explained in the equation (1-3) is reduced using mean-

field reduction and thus we obtain the ordinary differential equations for the mean-field system 

as the follows  

𝒓′  = 
 ∆𝜼

𝝅⁄  + 2r⟨𝒗⟩ - (𝜶 +𝒈𝒔𝒚𝒏s)r                 (29a) 

〈𝝂〉′     =  ⟨𝒗⟩𝟐- 𝜶⟨𝒗⟩ -⟨𝝎⟩ +𝜼̅ +𝑰𝒆𝒙𝒕+𝒈𝒔𝒚𝒏s(𝒆𝒓-⟨𝒗⟩)-𝝅𝟐𝒓𝟐 - 𝒌𝟏(𝜶𝟏𝝓𝟐 + 𝜷𝝓 + 𝜸) 𝝂𝒌 

                    (29b)

           

〈𝝎〉′     =  a(b⟨𝒗⟩ -⟨𝝎⟩) + 𝝎𝒋𝒖𝒎𝒑r                                               (29c) 

〈𝝓〉′     = 𝒌𝟐〈𝝂〉 - 𝒌𝟑〈𝝓〉                 (29d) 

𝒔′ = − 𝒔
𝝉𝒔⁄  + 𝒔𝒋𝒖𝒎𝒑r                                                              (29e)      

 

5.4 RESULT  

In this chapter, an additional three variable memristive term has been added to already existing 

ordinary differential equations describing the Izhikevich model. Memristors can simulate the 

magnetic induction action brought on by neuron potential. Memristors are also advantageous 

in neural network applications because of their quick processing speed and energy-efficient 

computing. When the three variable memristive term was added, the three main govering 

equations explaining the Izhikevich neuron model has changed to four. We have successfully 

derived the equations explaining the dynamics of memristive neuron model similar to that of 

the original model. 
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CHAPTER -6 

DISCUSSION 

 

The relationship between brain characteristics and behaviour is frequently inferred from 

models in order to derive theories of cause and effect. They make predictions, which enables 

more focused experimentation. Models enable virtual experimenting, which facilitates the 

development of intuition. In order to regain lost control capacities including perception (for 

example, deafness or blindness), motor movement decision-making, and continuous limb 

control, biological neuron models seek to describe the mechanisms behind the nervous system's 

operation. 

In this project we have chosen Izhikevich Neuron model for the study of neural dynamics of 

brain. The Izhikevich neuron model is used because of its simplicity and ability to accurately 

replicate the firing behavior of real neurons. It is a two-dimensional model that incorporates 

the essential dynamics of a neuron while minimizing complexity. The model can be easily 

tuned to represent a variety of neuron types, which makes it useful for simulating complex 

neural networks. Additionally, the Izhikevich model is computationally efficient, allowing for 

the simulation of large-scale networks and the exploration of complex neural dynamics. This 

has made it a popular choice for investigating the mechanisms of neural coding, plasticity and 

learning. Overall, the Izhikevich model provides a practical and biophysically realistic means 

of modeling the behavior of neural networks and understanding the underlying principles of 

neural computation. 

For a network of heterogeneous Izhikevich neurons that exhibits spike frequency adaptation 

through a recovery variable, we have developed a mean-field model. We have learned the 

underlying properties of cortical neurons by assessing the population firing rate and bifurcation 

diagrams which was obtained through MATLAB software and XPPAUT. 

Further we extended our project by adding a three variable memristive term to the already 

existing ordinary differential equation of the Izhikevich neuron model. The memristive 

Izhikevich neuron model is a type of artificial neuron model that incorporates a memristor into 

the traditional Izhikevich model. A memristor is a device that can remember the amount of 

current that has passed through it and modifies its resistance accordingly. The addition of a 

memristor to the Izhikevich model results in a more realistic neuron model that can exhibit the 

nonlinear dynamics and spiking behavior of real neurons. This can be particularly useful in 
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applications such as neuromorphic computing, where the goal is to mimic the behavior of 

biological neural networks using artificial systems. 

One of the advantages of the memristive Izhikevich neuron model is its ability to exhibit a wide 

range of dynamical behaviors, including regular spiking, fast spiking, and bursting. This makes 

it a useful tool for studying the dynamics of neural networks and the effects of various 

neuromodulators and synaptic connections on network behavior. Another advantage of the 

memristive Izhikevich neuron model is its low power consumption, which makes it suitable for 

applications in energy-efficient neuromorphic computing systems. Additionally, the 

memristor-based implementation of the model can potentially be implemented using existing 

technologies, making it a practical option for real-world applications. 

We brought a change from the Izhikevich neuron model to the memristive Izhikevich neuron 

model by incorporating a new variable which represents the electromagnetic induction or noise. 

We then described the behaviour of neuron by deriving the entire model and obtained the main 

five governing equations of the respective model which was found similar to that of the original 

model. We have generated the MATLAB code for the new memristive Izhikevich neuron 

model but we haven’t obtained the stimulations for this model. 
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MATLAB CODE FOR BASIC IZHIKEVICH MODEL 

 

ONE POPULATION 

 

function x = cauchyrnd(mu,hw,varargin) 

% x = cauchyrnd(mu,hw,M,N) 

% to generate M*N random variables with Cauchy (/Lorentizan) distribution 

% mu: the location parameter/ center 

% hw: the scale parameter/ half width 

% 

% the cumulative distribution function (CDF): 

%   F = (x, mu, hw) = 1/pi * arctan[(x-mu)/hw] + 1/2 

% then, 

%   x = hw * tan[pi*(F - 1/2)] + mu 

% 

% F varies from 0 to 1. In code, we can replace F with values randomly  

%  sampled from the uniform distribution on (0,1) 

%  

% This technique is referred to as inverse transform sampling and is very 

% useful for generating random variates from many distributions. 

% 

% ref.  

% method 1: (seen in many places) 

% https://math.stackexchange.com/questions/484395/how-to-generate-a-cauchy-random-

variable 

% 

% method 2: 

% without analytical expression of CDF (not verified yet) 

% https://www.mathworks.com/matlabcentral/answers/80333-generate-number-from-a-

probability-distribution 

% 

% method 3: generate fixed values (not proper) 

% https://www.mathworks.com/help/stats/work-with-the-cauchy-distribution-using-the-t-

location-scale-distribution.html 

% 

x = mu + hw.*tan(pi*(rand(varargin{:}) - 0.5)); 

end 

t_net = avg_fired_time; 

 

% figure(1) 

% plot(t_net,R) 
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[up,lo]= envelope(R,300,'peak'); 

% hold on 

% plot(t_net,up,'-r',t_net,lo,'-r') 

% hold off 
 

close all 

figure(1) 

 

%% size of the figure (width*height), position shown in the screen 

fig=gcf;  

fig.Position=[10,10,700,700];  

                         

                         

%% raster plot,randomly selected neurons to plot 

f1a=subplot(4,1,1); 

N_rand = 300;  

index_rand = ceil(N*rand(N_rand,1));  

for j=1:N_rand 

    select = find(firings(:,2)==index_rand(j)); 

    % the firing times of the jth neuron in the ylabel of raster plot,  

     

    row_num = length(select); 

    nn = j*ones(row_num,1); 

    plot(firings(select,1),nn,'.k','MarkerSize',0.5); 

  

    hold on 

end 

ylabel('Neuron \#','Interpreter','LaTeX') 

xlim([0,tend]) 

 

 

%% population firing rate 

f1b=subplot(4,1,2); 

tx=avg_fired_time; 

 

plot(tx,R,'b')                      % network 

hold on 

plot(t,rm,'r','LineWidth',2);       % mean field 

 

 

ylabel('$r(t)$','FontSize',14,'Interpreter','LaTeX') 

xlim([0,tend]) 

hold off 
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%% mean membrane potential 

f1c=subplot(4,1,3); 

plot(time,v_mean,'b')           % network 

hold on  

plot(t,vm,'r','LineWidth',2)    % mean field 

 

ylabel('$\langle v(t) \rangle$','FontSize',14,'Interpreter','LaTeX') 

xlabel('Time','Interpreter','LaTeX') 

xlim([0,tend]) 

hold off 

 

 

%% mean recovery variable 

 

f1d=subplot(4,1,4); 

plot(time,w_mean,'b')           % network 

hold on 

plot(t,wm,'r','LineWidth',2)    % mean field model 

 

% === Amplitudes of PO ======================== 

long = length(time); 

start = round(long*2/3); 

 

up_w = max(w_mean(start:end))*ones(long,1); 

lo_w = min(w_mean(start:end))*ones(long,1); 

 

% plot(time,up_w,'m',time,lo_w,'m') 

hold off 

%=============================================== 

 

ylabel('$\langle w(t) \rangle$','FontSize',14,'Interpreter','LaTeX') 

xlabel('Time','Interpreter','LaTeX') 

xlim([0,tend]) 

 

% By Liang Chen 

% May 4, 2022 

% 

% how to show the data distribution of the heterogeneous source 

% histogram: the y-axis represents the number count or percentage of 

% occurrences in the data for each column (bin). 

 

 

clc 

clear 
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close all 

 

%% ==========  Distribution 1 ====================== 

 

N=10^4; 

mu = 0.2; 

hw = 0.02;   

 

%% deterministic generation of a Lorentzian distribution 

% A typo in [Montbrio2015], it should be "tan", not "atan" 

 

eta_deter = zeros(N,1); 

n = zeros(N,1); 

for j=1:N 

    n(j) = (2*j-N-1)/(N+1); 

    eta_deter(j) = mu + hw*tan(pi*n(j)/2); 

end 

 

 

figure(1) 

histogram(eta_deter,10000,'Normalization','probability');  

% % 10000 bins, other options: 'Normalization','pdf' 

 

% histogram(eta_deter,10000,'Normalization','probability',DisplayStyle='stairs');  

% % default: DisplayStyle='bar' 

 

xlim([-0.5,0.5]) 

% set(gca,'ytick',[]) % not show values on the y-axis 

% yticklabels(yticks*100) % show value/% 

 

 

ylabel('$p$','interpreter','latex','fontsize',14) 

xlabel('$\eta$','interpreter','latex','fontsize',14) 

 

%% random generation of a Lorentzian distribution 

 

eta_rnd = cauchyrnd(mu,hw,N,1); 

 

figure(2) 

histogram(eta_rnd,20000,'Normalization','probability'); 

xlim([-0.5,0.5]) 

set(gca,'ytick',[]) 

ylabel('$p$','interpreter','latex','fontsize',14) 

xlabel('$\eta$','interpreter','latex','fontsize',14) 
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%% ==========  Distribution 2 ====================== 

 

N=10^3; 

mu = 1.8; 

hw = 1.4;   

 

%% deterministic generation of a bimodal Lorentzian distribution 

 

n = zeros(N,1); 

eta_deter = zeros(N,1); 

for j=1:N/2 

    n(j) = (2*j-N/2-1)/(N/2+1); 

    eta_deter(j) = -mu + hw*tan(pi*n(j)/2); 

end 

 

for j=N/2+1:N 

    n(j)=(2*j-3*N/2-1)/(N/2+1); 

    eta_deter(j) = mu + hw*tan(pi*n(j)/2); 

end 

 

figure(3) 

h = histogram(eta_deter,800,'Normalization','probability'); 

xlim([-20,20]) 

set(gca,'ytick',[]) 

ylabel('$p$','interpreter','latex','fontsize',14) 

xlabel('$\eta$','interpreter','latex','fontsize',14) 

 

%% random generation of a bimodal Lorentzian distribution 

 

eta_rnd1 = cauchyrnd(-mu,hw,N/2,1); 

eta_rnd2 = cauchyrnd(mu,hw,N/2,1); 

eta_rnd  = [eta_rnd1; eta_rnd2]; 

 

figure(4) 

histogram(eta_rnd,2000,'Normalization','probability'); 

xlim([-20,20]) 

set(gca,'ytick',[]) 

ylabel('$p$','interpreter','latex','fontsize',14) 

xlabel('$\eta$','interpreter','latex','fontsize',14) 

 

%% ==========  The End ==================== 
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% IC 

rint = 0; 

vint = 0; 

wint = b*vint; 

sint = 0; 

sint = sint + (1-sint).*(sint>1);    % to bound sm in [0,1]; 

 

[t,y] = ode45(@(t,y) 

mf_sys(mu,hw,alpha,gsyn,er,a,b,wjump,tsyn,sjump,I,t,y)',[0,tend],[rint,vint,wint,sint]'); 

rm = y(:,1); 

vm = y(:,2); 

wm = y(:,3); 

sm = y(:,4); 

% By Liang Chen,  

% Updated on Sep. 8, 2021 

% 

% introduce exact refractory time: from v(>= vpeak) to infinity, from -infinity to vreset  

% dimensionless network model 

% 

% 

%% all-to-all coupling with the same weights 

SMAX = sjump*ones(N,N);   

neff = N;                                                     

% 

%% ICs of variables  

v  = zeros(N,1);          % membrane potentials 

% 

v_mean = zeros(1,tend/dt+1);% evolution of the mean membrane potential 

% 

w = b*v;                    % recovery variable 

w_mean = zeros(1,tend/dt+1);%  

% 

s = zeros(N,1);             % synaptic gating variable (proportion) 

s = s + (1-s).*(s>1);       % to bound s in [0,1] because the synaptic  

%               current is g*s(t)*(er-v), not J*s(t) in [Montbrio2015] 

sstore = zeros(1,tend/dt+1); % store the synaptic variable of the first neuron 

                             % because of all-to-all connectivity, the 

                             % synaptic variable of each neuron is the same 

% 

%% store the spike time and index of neuron to plot the rasterplot 

firings = []; 

% 

%% Simulation, Euler integration 

% 
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%fired_inf = find(v >= vinf); 

for i = 1:tend/dt+1 

    v_ = v;                % V_ at the time (i-1)*dt, V at the time i*dt 

    w_ = w; 

    s_ = s; 

    sstore(i) = s(1); 

     

    %% 

    n_ref = find(v_ >= vreset & v_ <= vpeak); % neurons not in the refractory period 

    v_mean(i) = mean(v_(n_ref));  % at the time (i-1)*dt 

    w_mean(i) = mean(w_(n_ref)); 

     

    %%  

    fired_inf = find(v_ >= vinf); 

    firings = [firings; (i-1)*dt + 0*fired_inf, fired_inf]; 

 

    v(fired_inf) = -v_(fired_inf); 

    w(fired_inf) = w_(fired_inf) + wjump; 

     

    %%  

    n_fired = find(v_ < vinf); % neurons not fire 

    rhs = v_(n_fired).*(v_(n_fired) - alpha) - w_(n_fired) + eta(n_fired)... 

                                + I + gsyn*(er - v_(n_fired)).*s_(n_fired); 

    v(n_fired) = v_(n_fired) + dt*rhs; 

    w(n_fired) = w_(n_fired) + dt*(a*(b*v_(n_fired) - w_(n_fired))); 

     

     

    s(n_fired) = s_(n_fired) + dt*(-s_(n_fired)/tsyn) + sum(SMAX(n_fired,fired_inf),2)/neff; 

% row sum  

    s = s + (1-s).*(s>1);  % to bound s in [0,1]; 

      

end 

% 

%% calculation of the instantaneous firing rate 

twin = 2*10^(-2); 

fired_time = firings(:,1); 

% 

tmax = find(fired_time <= fired_time(end) - twin); 

% tmax(1): the first time index when fired_time + twin > fired_time(end) 

fired_num = zeros(tmax(end)+1,1);  

fired_num(1) = length(find(fired_time < twin)); 

% 

for i = 1:tmax(end) 
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    fired_num(i+1) = length(find(fired_time >= fired_time(i) & fired_time < twin + 

fired_time(i)));     

end 

avg_fired_time = [0;fired_time(1:tmax(end))]; 

R = fired_num/twin/N; % the firing rate 

 

%% ===========  The End ==================================== 

 

function dy = mf_sys(mu,hw,alpha,gsyn,er,a,b,wjump,tsyn,sjump,I,t,y)  

% 

% The mean field model (no delay): 

% r'      = hw/pi + 2*r*v_mean - r*(g*s + alpha) 

% v_mean' = -w_mean + mu + v_mean^2 + g*s*(er - v_mean)... 

%                                - alpha*v_mean - pi^2*r^2 

% w_mean' = a*(b*v_mean - w_mean) + wjump * r 

% s'      = -s/ts + sjump*r 

% 

% The heterogeneous source: the applied current 

%     the Lorentzian distribution: mu (center), hw (half width) 

% 

%========================================================== 

% 

% if y(4) > 1 

%     y(4)=1; 

% end   

% it seems there is no effect on limit of s in [0,1] 

% in our case, because mu, hw is small, s always stays in [0,1], but when 

% mu=5, hw=1, s will >1. 

 

dy(1) = hw/pi + 2*y(1)*y(2) - y(1)*(gsyn*y(4) + alpha); 

dy(2) = y(2)^2 - alpha*y(2) + gsyn*y(4)*(er-y(2)) - pi^2*y(1)^2 -y(3) + mu + I; 

dy(3) = a*(b*y(2) - y(3)) + wjump*y(1); 

dy(4) = -y(4)/tsyn + sjump*y(1); 

% 

end 

 

% Liang Chen, May 12, 2021 

% 

% Upper case for dimensional form, lower case for dimensionless form 

% ref. [Nicola2013bif] 

%      

%% dimensional form of the Izhikevich neuron eq.(46)-(49) 

% variables: V,W,S 

% 
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% the revovery eq. of W 

beta = -1;             % Resonator/Integrator Variable 

TW = 200;              % time constant of the adaptation eq. 

VR = -65;              % resting membrane potential 

% 

% the membrane potential eq. of V 

C = 250;              % Capacitance 

k1 = 2.5;              % spike width factor 

VT = VR + 40 - beta/k1; % threshold 

Er = 0;               % Reversal Potential  

Gsyn = 200;           % maximal conductanc 

Iext = 0;             % extra current 

% 

% synaptic eq. of S 

Sjump = 0.8; 

Tsyn = 4;             % synaptic time constant 

% 

% the resetting rule 

Vpeak = 30; 

Vreset = -55;   

Wjump = 200; 

% 

% 

%% the dimensionless Izhikevich neuron eq.(50)-(53)  

% variables 

% v = 1 + V/abs(VR); 

% w = W/(k*VR*VR); 

% s = S;  

% 

% the revovery eq. of w 

a = C/(TW*k1*abs(VR)); 

b = beta/(k1*abs(VR)); 

% 

% the membrane potential eq. of v 

alpha = 1 + VT/abs(VR); 

gsyn = Gsyn/(k1*abs(VR)); 

er = 1+Er/abs(VR); 

I = Iext/(k1*VR*VR); 

% 

% synaptic eq. of s 

tsyn = Tsyn*k1*abs(VR)/C; 

sjump = Sjump*C/(k1*abs(VR));  % different from [Nicola2013bif] 

% 

% the resetting rule 
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vpeak  = 1 + Vpeak/abs(VR); 

vreset = 1 + Vreset/abs(VR); 

wjump = Wjump/(k1*VR*VR); 

% 

 

%% ===========  The End ==================================== 

 

function varargout = plotshaded(x,y,fstr) 

% copyright: http://jvoigts.scripts.mit.edu/blog/nice-shaded-plots/ 

% 

% x: x coordinates 

% y: either just one y vector, or 2xN or 3xN matrix of y-data 

% fstr: format ('r' or 'b--' etc) 

% 

% example 

% x=[-10:.1:10];plotshaded(x,[sin(x.*1.1)+1;sin(x*.9)-1],'r');  

  

if size(y,1)>size(y,2) 

    y=y'; 

end; 

  

if size(y,1)==1 % just plot one line 

    plot(x,y,fstr); 

end; 

  

if size(y,1)==2 %plot shaded area 

    px=[x,fliplr(x)]; % make closed patch 

    py=[y(1,:), fliplr(y(2,:))]; 

    patch(px,py,1,'FaceColor',fstr,'EdgeColor','none'); 

end; 

  

if size(y,1)==3 % also draw mean 

    px=[x,fliplr(x)]; 

    py=[y(1,:), fliplr(y(3,:))]; 

    patch(px,py,1,'FaceColor',fstr,'EdgeColor','none'); 

    plot(x,y(2,:),fstr); 

end; 

  

alpha(.2); % make patch transparent 

 

end 
 

% By Liang Chen, May 12, 2021 

% Updated on June 1, Sep. 8 
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% Oct. 25: bursting 

% May 20, 2022 

% 

% Simulation of the network of Izhikevich neurons 

% dimensional form of eqs. 

% heterogeneous parameters with the Cauchy/Lorentzian distribution 

% 

% ref: Liang Chen, Sue Ann Campbell, Exact mean-field models for spiking 

%         neural networks with adaptation 

% preprint: https://arxiv.org/abs/2203.08341 

% 

%========================================================= 

tic 

clc 

clear 

%% values of the parameters 

parameters 

 

vpeak = 200; vreset = -vpeak; 

vinf = 200; % represent the infinity, vpeak-vreset=vinf=200 in [DumontErmentrout2017] 

 

N = 10^3; % number of cells 

 

 

%% Euler integration parameters  

dt = 10^(-3);  

tend =800; 

time = 0:dt:tend; 

%tend = Tend*k*abs(VR)/C; % Tend: dimensional; tend: dimensionless 

 

%% heterogeneous parameter, Lorentzian distribution 

mu = 0.12;                  % centre 

hw = 0.02;                  % half width  

 

% random generation 

eta = cauchyrnd(mu,hw,N,1); 

 

% or 

 

% deterministic generation: typo in [Montbrio2015], "tan", not "atan" 

 

% eta = zeros(N,1); 

% for j=1:N 

%     eta(j) = mu + hw*tan(pi/2*(2*j-N-1)/(N+1)); 
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% end 

 

%% mean-field model 

% Izh_mf,               % Euler integration 

 

Izh_mf_ode45            % ode45, efficient 

 

%% network model  

 

Izh_network3 

 

%% save data: 

save('Izh_mf_network.mat'); 

 

%% plot figures 

 

fig_plot   

 

toc 

%% ============= The end ============ 

 

TWO POPULATION  

function x = cauchyrnd(mu,hw,varargin) 

% x = cauchyrnd(mu,hw,M,N) 

% to generate M*N random variables with Cauchy (/Lorentizan) distribution 

% mu: the location parameter/ center 

% hw: the scale parameter/ half width 

% 

% the cumulative distribution function (CDF): 

%   F = (x, mu, hw) = 1/pi * arctan[(x-mu)/hw] + 1/2 

% then, 

%   x = hw * tan[pi*(F - 1/2)] + mu 

% 

% F varies from 0 to 1. In code, we can replace F with values randomly  

%  sampled from the uniform distribution on (0,1) 

%  

% This technique is referred to as inverse transform sampling and is very 

% useful for generating random variates from many distributions. 

% 

% ref.  

% method 1: (seen in many places) 

% https://math.stackexchange.com/questions/484395/how-to-generate-a-cauchy-random-

variable 
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% 

% method 2: 

% without analytical expression of CDF (not verified yet) 

% https://www.mathworks.com/matlabcentral/answers/80333-generate-number-from-a-

probability-distribution 

% 

% method 3: generate fixed values (not proper) 

% https://www.mathworks.com/help/stats/work-with-the-cauchy-distribution-using-the-t-

location-scale-distribution.html 

% 

x = mu + hw.*tan(pi*(rand(varargin{:}) - 0.5)); 

end 

%% population 1 

figure(1) 

% =================== raster plot =============================== 

% randomly selected neurons to plot  

subplot(3,1,1)  

N1_rand = 300;  

index_rand1 = ceil(N1*rand(N1_rand,1));  

for j=1:N1_rand 

    select1 = find(firings1(:,2)==index_rand1(j)); 

    % the firing times of the jth neuron in the ylabel of raster plot,  

     

    row_num1 = length(select1); 

    nn1 = j*ones(row_num1,1); 

    plot(firings1(select1,1),nn1,'.k','MarkerSize',0.1); 

     

    hold on 

end 

ylabel('Neuron \#','Interpreter','LaTeX') 

xlim([0,tend]) 

% 

%============== the population firing rate ====================== 

subplot(3,1,2) 

fig(1)= plot(avg_fired_time1,R1,'g');       % network 1 

hold on 

fig(2)= plot(t,rm1,'r','LineWidth',2);      % mean field model 1  

xlim([0,tend]) 

ylim([-0.1,0.5]) 

ylabel('$r$','FontSize',14,'Interpreter','LaTeX') 

legend(fig(1:2),'Pop. p','Mean field') 

% 

%============== mean membrane potential ========================== 

subplot(3,1,3) 
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plot(time,v1_mean,'g');            % network 1 

hold on 

plot(t,vm1,'r','LineWidth',2);     % mean field 1 

xlim([0,tend]) 

ylim([-0.1,1.5]) 

ylabel('$\langle v \rangle$','FontSize',14,'Interpreter','LaTeX') 

xlabel('Time') 

% 

%=============== mean adaptation ================================== 

% because wm evolves slow with time, but rm and vm fast, it is better to 

% plot them respectively. 

figure(2) 

fig(1)=plot(time,w1_mean,'g');            % network 1 

hold on 

fig(2)=plot(time,w2_mean,'b');            % network 2 

fig(3)=plot(t,wm1,'r');             % mean field 1 

plot(t,wm2,'r')             % mean field 2 

ylabel('$\langle w \rangle$','FontSize',14,'Interpreter','LaTeX') 

xlabel('Time') 

legend(fig(1:3),'Pop. p','Pop. q','Mean field') 

xlim([0,tend]) 

ylim([-0.02,0.2]) 

% 

% 

%% population 2 

figure(3) 

% =================== raster plot =============================== 

% randomly selected neurons to plot  

subplot(3,1,1) 

N2_rand = 300;  

index_rand2 = ceil(N2*rand(N2_rand,1));  

for j=1:N2_rand 

    select2 = find(firings2(:,2)==index_rand2(j)); 

    % the firing times of the jth neuron in the ylabel of raster plot,  

     

    row_num2 = length(select2); 

    nn2 = j*ones(row_num2,1); 

    plot(firings2(select2,1),nn2,'.k','MarkerSize',0.1); 

     

    hold on 

end 

ylabel('Neuron \#','Interpreter','LaTeX') 

xlim([0,tend]) 

% 
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%============== the population firing rate ====================== 

subplot(3,1,2) 

%tend_f = ceil(0.03*length(time)); % time span for fast variables 

fig(1)= plot(avg_fired_time2,R2,'b');       % network 2 

hold on 

fig(2)= plot(t,rm2,'r','LineWidth',2);      % mean field model 2 

xlim([0,tend]) 

ylim([-0.1,0.5]) 

ylabel('$r$','FontSize',14,'Interpreter','LaTeX') 

legend(fig(1:2),'Pop. q','Mean field') 

% 

%============== mean membrane potential ========================== 

subplot(3,1,3)  

plot(time,v2_mean,'b');            % network 2 

hold on 

plot(t,vm2,'r','LineWidth',2)      % mean field 2 

xlim([0,tend]) 

ylim([-0.1,1.5]) 

ylabel('$\langle v \rangle$','FontSize',14,'Interpreter','LaTeX') 

xlabel('Time') 

 

 

%% === The End ========================== 

% By Liang Chen 

% Oct. 20, 2021 

% 

% Population 1: subscript 1; Population 2: subscript 2 

% 

%% Initial conditions 

% 

% IC  % IC.m 

% 

rm1 = zeros(1,tend/dt+1);  

vm1 = zeros(1,tend/dt+1);  

wm1 = zeros(1,tend/dt+1); 

% 

rm2 = zeros(1,tend/dt+1); 

vm2 = zeros(1,tend/dt+1); 

wm2 = zeros(1,tend/dt+1); 

% 

sm1 = zeros(1,tend/dt+1); 

sm2 = zeros(1,tend/dt+1); 

%sm = sm + (1-sm).*(sm>1);    % to bound sm in [0,1]; 

% 
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%% 

p1 = N1/(N1+N2); 

p2 = 1-p1; 

% 

%% 

for i = 1:tend/dt 

    gs1 = p1*gsyn11*sm1 + p2*gsyn12*sm2; 

    gs2 = p1*gsyn21*sm1 + p2*gsyn22*sm2; 

    % 

    rm1(i+1) = rm1(i) + dt*(hw1/pi + 2*rm1(i)*vm1(i) - rm1(i)*(gs1(i) + alpha)); 

    vm1(i+1) = vm1(i) + dt*(vm1(i)^2 - alpha*vm1(i) + gs1(i)*(er - vm1(i)) - pi^2*rm1(i)^2- 

wm1(i) + mu1 + Iext1); 

    wm1(i+1) = wm1(i) + dt*(a1*(b*vm1(i) - wm1(i)) + wjump1*rm1(i)); 

    sm1(i+1) = sm1(i) + dt*(-sm1(i)/tsyn + sjump*rm1(i));  

    sm1 = sm1 + (1-sm1).*(sm1>1);  % to bound sm in [0,1]; 

    % 

    rm2(i+1) = rm2(i) + dt*(hw2/pi + 2*rm2(i)*vm2(i) - rm2(i)*(gs2(i) + alpha)); 

    vm2(i+1) = vm2(i) + dt*(vm2(i)^2 - alpha*vm2(i) + gs2(i)*(er - vm2(i)) - pi^2*rm2(i)^2- 

wm2(i) + mu2 + Iext2); 

    wm2(i+1) = wm2(i) + dt*(a2*(b*vm2(i) - wm2(i)) + wjump2*rm2(i)); 

    sm2(i+1) = sm2(i) + dt*(-sm2(i)/tsyn + sjump*rm2(i));  

    sm2 = sm2 + (1-sm2).*(sm2>1);  % to bound sm in [0,1]; 

end 

 

t = 0:dt:tend; 

 

%% =========  The End ============= 

% Integration of the mean-field model of two populations 

% By Liang Chen 

% Nov. 5, 2021 

% 

%% initial conditions: 

rint1 = 0;  

vint1 = 0;  

wint1 = 0; 

sint1 = 0; 

% 

rint2 = 0; 

vint2 = 0; 

wint2 = 0; 

sint2 = 0; 

%sm = sm + (1-sm).*(sm>1);    % to bound sm in [0,1]; 

% 

%% integration 
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[t,y] = ode45(@(t,y) 

mf_sys_2p(p1,p2,gsyn11,gsyn12,gsyn21,gsyn22,mu1,hw1,mu2,hw2,alpha,Iext1,Iext2,er,a1,a

2,b,wjump1,wjump2,tsyn,sjump,t,y)',[0,tend],[rint1,vint1,wint1,sint1,rint2,vint2,wint2,sint2]'

); 

% 

%% output of variables 

rm1 = y(:,1); 

vm1 = y(:,2); 

wm1 = y(:,3); 

sm1 = y(:,4); 

% 

rm2 = y(:,5); 

vm2 = y(:,6); 

wm2 = y(:,7); 

sm2 = y(:,8); 

% Liang Chen, May 12, 2021, Updated on Oct. 5, 2021 

% 

% the dimensional system eq.(59)-(62) in [Nicola2013Bif] 

% 

% dimensional system: Upper case 

% dimensionless syst: lower case 

% Population 1: subscript 1; Population 2: subscript 2 

%  

% I don't write the vector expression, e.g. v = [v1;v2], to avoid too large 

% size of the matrix for Matlab. 

% 

% 

%% Initial conditions 

% 

v1 = zeros(N1,1); v2 = zeros(N2,1); 

w1 = zeros(N1,1); w2 = zeros(N2,1); 

s11= zeros(N1,1); s12= zeros(N1,1); 

s21= zeros(N2,1); s22= zeros(N2,1); 

% 

% evolution of the mean variables 

v1_mean = zeros(1,tend/dt+1);  v2_mean = zeros(1,tend/dt+1); 

w1_mean = zeros(1,tend/dt+1);  w2_mean = zeros(1,tend/dt+1); 

% 

% evolution of synaptic variables of the first neuron 

% because of all-to-all connectivity, each neuron in the same group is the same 

sstore11 = zeros(1,tend/dt+1); sstore12 = zeros(1,tend/dt+1); 

sstore21 = zeros(1,tend/dt+1); sstore22 = zeros(1,tend/dt+1); 

 

%% synaptic connection weight matrix (dimensionless) 
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smax11 = sjump*ones(N1,N1); % all-to-all coupling with the same weights 

p11 = N1/N; 

n11 = N1; 

 

smax12 = sjump*ones(N1,N2); 

p12 = N2/N; 

n12 = N2; 

 

smax21 = sjump*ones(N2,N1); 

p21 = N1/N; 

n21 = N1; 

 

smax22 = sjump*ones(N2,N2); 

p22 = N2/N; 

n22 = N2; 

% 

%% store the spike time and index of neuron to plot the rasterplot 

firings1 = []; 

firings2 = []; 

% 

%% Simulation, Euler integration 

% 

for i = 1:tend/dt+1 

    % restore the previous variable for the Euler integration 

    v1_ = v1;                  v2_ = v2;              

    w1_ = w1;                  w2_ = w2; 

    s11_ = s11;s12_ = s12;     s21_ = s21;s22_ = s22; 

     

    sstore11(i) = s11(1); % store the first neuron. because of all-to-all  

               % connectivity, each neuron in the same group is the same 

    sstore12(i) = s12(1); 

    sstore21(i) = s21(1); 

    sstore22(i) = s22(1); 

    % 

    %% neurons not in the refractory period vreset < v < vpeak 

    n_ref1 = find(v1_ >= vreset & v1_ <= vpeak);   

    v1_mean(i) = mean(v1_(n_ref1));  % at the time (i-1)*dt 

    w1_mean(i) = mean(w1_(n_ref1)); 

    % 

    n_ref2 = find(v2_ >= vreset & v2_ <= vpeak);  

    v2_mean(i) = mean(v2_(n_ref2));  % at the time (i-1)*dt 

    w2_mean(i) = mean(w2_(n_ref2)); 

     

    %% neurons fire at vinf 
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    fired_inf1 = find(v1_ >= vinf); 

    firings1 = [firings1; (i-1)*dt + 0*fired_inf1, fired_inf1]; 

    v1(fired_inf1) = -v1_(fired_inf1); 

    w1(fired_inf1) = w1_(fired_inf1) + wjump1; 

    % 

    fired_inf2 = find(v2_ >= vinf); 

    firings2 = [firings2; (i-1)*dt + 0*fired_inf2, fired_inf2]; 

    v2(fired_inf2) = -v2_(fired_inf2); 

    w2(fired_inf2) = w2_(fired_inf2) + wjump2; 

     

    %% neurons not fire 

    n_fired1 = find(v1_ < vinf);  

    gs1 = p11*gsyn11*s11_(n_fired1) + p12*gsyn12*s12_(n_fired1); 

    rhs1 = v1_(n_fired1).*(v1_(n_fired1) - alpha) - w1_(n_fired1) ... 

        + eta1(n_fired1) + Iext1 + gs1.*(er - v1_(n_fired1)); 

    v1(n_fired1) = v1_(n_fired1) + dt*rhs1; 

    w1(n_fired1) = w1_(n_fired1) + dt*(a1*(b*v1_(n_fired1) - w1_(n_fired1))); 

    % 

    n_fired2 = find(v2_ < vinf);  

    gs2 = p21*gsyn21*s21_(n_fired2) + p22*gsyn22*s22_(n_fired2); 

    rhs2 = v2_(n_fired2).*(v2_(n_fired2) - alpha) - w2_(n_fired2)... 

        + eta2(n_fired2) + Iext2 + gs2.*(er - v2_(n_fired2)); 

    v2(n_fired2) = v2_(n_fired2) + dt*rhs2; 

    w2(n_fired2) = w2_(n_fired2) + dt*(a2*(b*v2_(n_fired2) - w2_(n_fired2))); 

    % 

    s11(n_fired1) = s11_(n_fired1) + dt*(-s11_(n_fired1)/tsyn) ... 

        + sum(smax11(n_fired1,fired_inf1),2)/n11; % row sum  

    s12(n_fired1) = s12_(n_fired1) + dt*(-s12_(n_fired1)/tsyn) ... 

        + sum(smax12(n_fired1,fired_inf2),2)/n12; % row sum  

    % 

    s21(n_fired2) = s21_(n_fired2) + dt*(-s21_(n_fired2)/tsyn) ... 

        + sum(smax21(n_fired2,fired_inf1),2)/n21; % row sum  

    s22(n_fired2) = s22_(n_fired2) + dt*(-s22_(n_fired2)/tsyn) ... 

        + sum(smax22(n_fired2,fired_inf2),2)/n22; % row sum  

    % 

    % s11 = s21 = s1; s12 = s22 = s2; 

    s = [s11 s12; s21 s22]; 

    s = s + (1-s).*(s>1);   % to bound s in [0,1] 

%     s11 = s11 + (1-s11).*(s11>1);  % to bound s in [0,1]; 

%     s21 = s21 + (1-s21).*(s21>1); 

%     s12 = s12 + (1-s12).*(s12>1); 

%     s22 = s22 + (1-s22).*(s22>1); 

     

end 
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%% calculation of the instantaneous firing rate 

twin = 2*10^(-2); 

%% population 1 

fired_time1 = firings1(:,1);       

% 

tmax1 = find(fired_time1 <= fired_time1(end) - twin); 

% tmax(1): the first time index when fired_time + twin > fired_time(end) 

fired_num1 = zeros(tmax1(end)+1,1);  

fired_num1(1) = length(find(fired_time1 < twin)); 

% 

for i = 1:tmax1(end) 

    fired_num1(i+1) = length(find(fired_time1 >= fired_time1(i) ... 

        & fired_time1 < twin + fired_time1(i)));     

end 

avg_fired_time1 = [0;fired_time1(1:tmax1(end))]; 

R1 = fired_num1/twin/N1; % the firing rate 

 

%% population 2     

fired_time2 = firings2(:,1);       

% 

tmax2 = find(fired_time2 <= fired_time2(end) - twin); 

% tmax(1): the first time index when fired_time + twin > fired_time(end) 

fired_num2 = zeros(tmax2(end)+1,1);  

fired_num2(1) = length(find(fired_time2 < twin)); 

% 

for i = 1:tmax2(end) 

    fired_num2(i+1) = length(find(fired_time2 >= fired_time2(i) ... 

        & fired_time2 < twin + fired_time2(i)));     

end 

avg_fired_time2 = [0;fired_time2(1:tmax2(end))]; 

R2 = fired_num2/twin/N2; % the firing rate     

 

 

%% === end === 

% Mean-field model of two populations 

% By Liang Chen 

% Nov. 5, 2021 

% 

function dy = 

mf_sys_2p(p1,p2,gsyn11,gsyn12,gsyn21,gsyn22,mu1,hw1,mu2,hw2,alpha,Iext1,Iext2,er,a1,a

2,b,wjump1,wjump2,tsyn,sjump,t,y)  

% 

% The mean field model (no delay): 
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% r'      = hw/pi + 2*r*v_mean - r*(g*s + alpha) 

% v_mean' = -w_mean + mu + v_mean^2 + g*s*(er - v_mean)... 

%                                - alpha*v_mean - pi^2*r^2 

% w_mean' = a*(b*v_mean - w_mean) + wjump * r 

% s'      = -s/ts + sjump*r 

% 

% The heterogeneous source: the applied current 

%     the Lorentzian distribution: mu (center), hw (half width) 

% 

%========================================================== 

% 

gs1 = p1*gsyn11*y(4) + p2*gsyn12*y(8); 

gs2 = p1*gsyn21*y(4) + p2*gsyn22*y(8); 

% 

% population 1 

dy(1) = hw1/pi + 2*y(1)*y(2) - y(1)*(gs1 + alpha); 

dy(2) = y(2)^2 - alpha*y(2) + gs1*(er-y(2)) - pi^2*y(1)^2 -y(3) + mu1 + Iext1; 

dy(3) = a1*(b*y(2) - y(3)) + wjump1*y(1); 

dy(4) = -y(4)/tsyn + sjump*y(1); 

% 

% population 2 

dy(5) = hw2/pi + 2*y(5)*y(6) - y(5)*(gs2 + alpha); 

dy(6) = y(6)^2 - alpha*y(6) + gs2*(er-y(6)) - pi^2*y(5)^2 -y(7) + mu2 + Iext2; 

dy(7) = a2*(b*y(6) - y(7)) + wjump2*y(5); 

dy(8) = -y(8)/tsyn + sjump*y(5); 

% 

end 

% two populations of Izhikevich neurons 

% strongly adapting, weakly adapting 

% 

% Liang Chen, May 15, 2021,  

% updated on Oct. 5, 2021 

% 

% Upper case for dimensional form, variables: V, W, S  

% lower case for dimensionless form, variables: v, w, s 

% Iapp for dimensional syst. I for dimensionless syst. 

% 

%% Parameters for the dimensional form of the Izhikevich neuron eq.(59)-(62) in 

[Nicola2013Bif] 

% 

% the recovery eq. 

beta = -1;             % Resonator/Integrator Variable 

VR = -65;             % resting membrane potential 

% 
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% the membrane potential eq. 

C = 250;              % Capacitance 

k1 = 2.5;              % spike width factor 

VT = VR + 40 - beta/k1; % threshold          

Er = 0;               % Reversal Potential  

% 

% synaptic eq. 

Sjump = 0.8; 

Tsyn = 4;             % synaptic time constant 

% 

% the resetting rule 

Vpeak = 30; 

Vreset = -55; 

% 

N = 10^4; p1=0.8; p2=1-p1; 

% Strongly adapting       Weakly adapting 

N1    = N*p1;             N2    = N-N1; % number of neurons in each network 

Gsyn11= 200;  Gsyn12=200; Gsyn21= 200; Gsyn22=200; % maximal conductances between 

populations: [SA-SA SA-WA; WA-SA WA-WA] 

TW1   = 200;              TW2   = 20; % time constant of the adaptation eq. 

Wjump1= 200;              Wjump2= 100;% adaptation jump 

IEXT1 = 0;                IEXT2 = 0;  % external current 

% 

 

% 

%% Parameters for the dimensionless Izhikevich neuron eq.(50)-(53) in [Nicola2013Bif] 

% 

% the revovery eq. 

a1 = C/(TW1*k1*abs(VR));       a2 = C/(TW2*k1*abs(VR)); 

b = beta/(k1*abs(VR)); 

% 

% the membrane potential eq. 

alpha = 1 + VT/abs(VR); 

er = 1+Er/abs(VR); 

 

gsyn11 = Gsyn11/(k1*abs(VR));  gsyn12 = Gsyn12/(k1*abs(VR)); 

gsyn21 = Gsyn21/(k1*abs(VR));  gsyn22 = Gsyn22/(k1*abs(VR)); 

% 

% the external current 

Iext1 = IEXT1/(k1*VR*VR);      Iext2 = IEXT2/(k1*VR*VR); 

% 

 

% 

% synaptic eq. 
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tsyn = Tsyn*k1*abs(VR)/C; 

sjump = Sjump*C/(k1*abs(VR));  % different from [Nicola2013bif] 

% 

% the resetting rule 

vpeak = 1 + Vpeak/abs(VR); 

vreset = 1 + Vreset/abs(VR); 

wjump1 = Wjump1/(k1*VR*VR);    wjump2 = Wjump2/(k1*VR*VR); 

% 

% variables 

% v = 1 + V/abs(VR); 

% w = W/(k1*VR*VR); 

% s = S;  

% T = C/(k1*abs(VR))*t  % T for dimensional system, t for dimensionless 

% system 

% 

 

%% === end === 

% By Liang Chen, May 12, 2021 

% Updated on May 20, 2022 

%  

% 

% Simulation of the two-population network of Izhikevich neurons 

% dimensional form of eqs. 

% heterogeneous parameters with the Cauchy/Lorentzian distribution 

% 

% 

% ref: Liang Chen, Sue Ann Campbell, Exact mean-field models for spiking 

%         neural networks with adaptation 

% preprint: https://arxiv.org/abs/2203.08341 

% 

% 

%========================================================= 

tic 

clc 

clear 

%% values of the parameters 

parameters 

 

a2 = 10*a1; % for dimensionless model 

%but if from dimensionanl model, 10 times changes because of numerical error 

 

vpeak = 200; vreset = -vpeak; 

vinf = 200;  
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%% Euler integration parameters  

dt = 10^(-3);  

tend =1200; 

time = 0:dt:tend; 

Tend = tend/(k1*abs(VR)/C);% Total simulation time, dimensional time (ms) 

 

%% heterogeneous parameter, Lorentzian distribution 

  

mu1 = 0.05;                   mu2 = 0.05; % centre                                                   

hw1 = 0.02;                   hw2 = 0.02; % half width  

 

% random generation 

eta1 = cauchyrnd(mu1,hw1,N1,1);   

eta2 = cauchyrnd(mu2,hw2,N2,1);   

 

% % deterministic generation, typo in [Montbrio2015], "tan", not "atan" 

% eta1 = zeros(N1,1); 

% for j = 1:N1 

%     eta1(j) = mu1 + hw1*tan(pi/2*(2*j-N1-1)/(N1+1));  

% end 

%  

% eta2 = zeros(N2,1); 

% for j = 1:N2 

%     eta2(j) = mu2 + hw2*tan(pi/2*(2*j-N2-1)/(N2+1));  

% end 

 

%% mean-field model 

 

%Izh_SAWA_mf;   % Euler method to integrate ODEs 

 

Izh_SAWA_mf_ode % ODE45 

 

%% network model (see details in run.m of the folder Simulation_QIF) 

 

Izh_SAWA_network 

 

%% save data 

 

save('Izh_mf_network_SAWA.mat'); 

 

%% plot figures 

 

fig_plot2 
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toc 

%% ============= The end ============ 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


