TM211490TR	Reg. No :
	Name :

M. Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2021 [2021 Admissions Regular and 2020 Admissions Improvement & Supplementary] SEMESTER I - CORE COURSE (MATHEMATICS) MT1C02TM20 - BASIC TOPOLOGY

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Define (i) Sierpinski Topology (ii) Order Topology
- 2. Prove that a subset of a topological space is open if and only if it is a neighbourhood of each of its points.
- Prove or disprove that in a metric space a closed ball is the closure of the open ball with the same centre and radius.
- 4. Prove that constant function is always continuous.
- 5. Prove that in a co-finite space any finite subset is closed.
- 6. Define homeomorphism. Give three equivalent conditions for $f: X \to Y$ to be a homeomorphism.
- 7. Prove that every continuous image of a compact space is compact.
- 8. Prove that regularity is a hereditary property. Prove that every continuous image of a compact space is compact.
- 9. Prove that every path connected space is connected.
- 10. Is every quotient map open? Justify.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Let (X,d) be a metric space then prove that
 - (i) The empty set and the full set X are open sets.
 - (ii) Arbitrary union of open sets is again open.
 - (iii) Finite intersection of open sets is again open.
 - (iv) Given distinct points x,y \in X, \exists open sets U and V such that x \in U and y \in V and U \cap V= \emptyset .
- 12. Define hereditary property with example. Prove that second countability is a hereditary property.
- 13. Define a dense subset in a topological space (X,T). If Bis any base for (X,T), prove that a subset D of X is dense in X if and only if D intersects every non-empty member of B.
- 14. Define interior of a set. Let X be a space and A be a subset of X. Then prove that int(A) is the union of all open sets contained in A. Also prove it is the largest open subset of X contained in A.
- 15. Prove that a topological space X is regular if and only if for any $x \in X$ and any open set G containing x, there exists an open set H containing x such that H^- .
- 16. Show that the topological product of of any finite number of connected space is connected.
- 17. Show that every closed surjective map is a quotient map. And hence show that every quotient space of a discrete space is discrete.
- 18. Prove that every quotient space of a locally connected space is locally connected.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Define a sub-base for a topology. Give an example of a sub-base for the set of real numbers with usual topology. Also prove that if X is a set, T a topology on X and S, a family of subsets of X, then S is a sub-base for T if and only if S generates T.
- 20. State and Prove the equivalent conditions for a function being continuous.
- 21. Prove that every closed and bounded interval is compact.
- 22. (a) Define T4 and prove that all metric spaces are T4. (b) Show that every regular, Lindeloff space is normal.