TM211500TR	Reg. No :

Name :....

M. Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2021

[2021 Admissions Regular and 2020 Admissions Improvement & Supplementary] SEMESTER I - CORE COURSE (MATHEMATICS) MT1C03TM20 - REAL ANALYSIS

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. If f is continuous on [a,b] and if f' exist and is bounded in the interior say $|f'(x)| \le A \forall x \in (a,b)$ then prove that f is of bounded variation on [a,b].
- 2. Prove or disprove, "f(x)=x on [0,1] is of bounded variation"
- 3. If $U(P, f, \propto) L(P, f, \propto) < \epsilon$ holds for some P and some ϵ then prove that the same equation holds for every refinement of P.

4. If
$$f \in R(\propto)$$
, then prove that $\left| \int_a^b f \, d \propto \right| \leq \int_a^b |f| \, d \propto$

- 5. Prove or Disprove, "Limit of the Integral need not be equal to the integral of the limit even if both are finite."
- 6. Give an example of an everywhere discontinuous limit function, which is not Riemann-Integrable.
- 7. Prove or Disprove, "The limit processes cannot in general be interchanged without affecting the result"
- 8. State and prove any two properties of logarithmic function.
- 9. State and prove any two properties of exponential function.

10. If E(z) =
$$\sum_{n=0}^{\infty} \frac{z^n}{n!}$$
 prove that E(z+w) = E(z) E(w).

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. State and prove the sufficient condition for bounded variation.
- 12. Prove or Disprove, "Boundedness of f^' is not necessary for f to be of Bounded variation"
- 13. Suppose f is bounded on [a,b], f has only finitely many points of discontinuity on [a,b] and α is continuous at every point at which f is discontinuous. Then prove that $f \in R(\alpha)$
- 14. If $f \in R(\alpha)$ and $g \in R(\alpha)$ on [a,b] then prove that

a.
$$fg \in R(\alpha)$$
 and
b. $|f| \in R(\alpha)$ and $|\int_a^b f d\alpha| \le \int_a^b |f d\alpha|$

- 15. State and prove Weistrass-M-Test for Uniform Convergence.
- 16. Let {fn}, {gn} which converge uniformly on some set E, prove that {fngn} doesnot converge uniformly on E.
- 17. State and prove Abel's Theorem.

18. If $\{f_n\}$ is a point wise bounded sequence of complex functions on a countable set E, then prove that $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}(x)\}$ converges for every $x \in E$.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Let f be of bounded variation on [a,b]. If $x \in (a,b]$, let $V(x)=V_f(a,x)$ and put V(a)=0. Then prove that every point of continuity of f is also a point of continuity of V and the converse is also true.
- 20. State and prove the five properties of the Integrals.
- 21. State and prove the relationship between Uniform convergence and Integration.
- 22. Suppose $a_0, a_1, ..., a_n$ are complex numbers, $n \ge 1$, $a_n \ne 0$, $P(z) = \sum_{n=0}^{\infty} a_k z^k$. Then show that P(z) = 0 for some complex number z.