\qquad
\qquad

M. Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2021

[2021 Admissions Regular and 2020 Admissions Improvement \& Supplementary]
SEMESTER I - CORE COURSE (MATHEMATICS)
MT1C01TM20 - LINEAR ALGEBRA
Time : 3 Hours
Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight
($8 \times 1=8$)

1. Let α be a vector in F^{n}. Find the coordinate matrix of α relative to the standard basis of F^{n}.
2. Verify whether $\left(\mathbb{R}^{2}, \oplus^{*}\right)$ with the two operations defined by $\alpha \oplus \beta=\alpha-\beta$ and c $\alpha=-\mathrm{c} \alpha$ is a vector space.
3. If W is a k-dimensional subspace of an n-dimensional vector space V, then, show that W is the intersection of $(n-k)$ hyperspaces in V.
4. Define dual space of V and show that $\operatorname{dim} \mathrm{V}^{*}=\operatorname{dim} \mathrm{V}$.
5. Prove that a linear transformation T is non singular if and only if, T is one-one.
6. For a 2×2 matrix A over a field prove that $\operatorname{det}(I+A)=1+\operatorname{det} A$ if and only if trace $(A)=0$.
7. Let D be a 2-linear function with the property that $D(A)=0$ for all 2×2 matrices A over a commutative ring with identity, K, having equal rows. Then show that D is alternating.
8. Determine a 3×3 matrix for which the minimal polynomial is x^{2}.
9. Define a projection of a vector space V. Suppose E is a projection and let R be the range of E and N be the null space of E . Then show that the vector β is in the range R if and only if $\mathrm{E} \beta^{\beta} \beta$.
10. Prove that every matrix A such that $A^{2}=A$ is similar to a diagonal matrix.

Part B

II. Answer any Six questions. Each question carries 2 weight

$(6 \times 2=12)$
11. Let W_{1} and W_{2} be subspaces of a vector space V such that $W_{1}+W_{2}=V$ and $W_{1} \cap W_{2}=\{0\}$. Prove that for each vector $\alpha_{\text {in } V \text { there are unique vectors }} \alpha_{1}$ in W_{1} and α_{2} in W_{2} such that $\alpha_{=} \alpha_{1+} \alpha_{2}$.
12. Let $\mathfrak{B}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ be the ordered basis for R^{3} consisting of $\alpha_{1}=(1,0,-1), \quad \alpha_{2}=(1,1,1)$ $\alpha_{3}=(1,0,0)$. What are the coordinates of the vector (a, b, c) in the ordered basis \mathfrak{B} ?
13. If V and W are finite dimensional vector space over a field F , prove that V and W are isomorphic if and only if $\operatorname{dim} \mathrm{V}$ $=\operatorname{dim} \mathrm{W}$.
14. Let T be a linear transformation from V into W where V and W are finite dimensional vector spaces over the field F. Show that rank $\left(\mathrm{T}^{\mathrm{t}}\right)=\operatorname{rank}(\mathrm{T})$.
15. Prove that an $n \times n$ matrix A over a commutative ring with identity, K, is invertible if and only if det A is invertible in K.
16. Show that the determinant function on 2×2 matrices A over K, a commutative ring with identity, is alternating and 2linear as a function of the columns of A.
17. Let T be a linear operator on V , a finite dimensional vector space and c be a scalar. Then prove that the following statements are equivalent.

1. c is characteristic value of T.
2. The operator $(T-c I)$ is singular.
3. $|T-c I|=0$.
4. Find the minimal polynomial for T where T is a linear operator on R^{3} which is represented in the standard ordered basis by the matrix $\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$.

Part C

III. Answer any Two questions. Each question carries 5 weight

19. Let m and n be positive integers and let F be a field. Suppose W is a subspace of F^{n} and $\operatorname{dim} W \leq m$. Prove that there is precisely one $m \times n$ row reduced echelon matrix over F which has W as its row space.
20. (a) V and W be finite dimensional vector spaces over the field F and let $\left\{\alpha_{1}, \alpha_{2} \ldots \ldots \alpha_{n}\right\}$ be an ordered basis for V and let $, \beta_{1}, \beta_{2}$, .., β_{n} be any vectors in W . Then show that there is precisely one linear transformation $T: V \rightarrow W$ such that $T \alpha_{j}=\beta_{j} ; j=1,2, \ldots n$.
(b) Let F be a field. $\mathrm{f}: \mathrm{F}^{2} \rightarrow \mathrm{~F}$ is defined by $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{ax}_{1}+\mathrm{bx}_{2}$. Define $T: F^{2} \rightarrow F^{2}$ as $\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(-\mathrm{x}_{2}, \mathrm{x}_{1}\right)$. Compute $\mathrm{T}^{\mathrm{t}} \mathrm{f}$.
21. State and prove the properties of determinants.
22. (a) Suppose T be a linear operator on the n dimensional vector space V and suppose that T has n distinct characteristic values. Prove that T is diagonalizable.
(b) Let V be a finite dimensional vector space over the filed F and let T be a linear operator on V . Show that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F .
