M. Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2021 [2021 Admissions Regular and 2020 Admissions Improvement & Supplementary] **SEMESTER I - CORE COURSE (MATHEMATICS)** MT1C01TM20 - LINEAR ALGEBRA

Time: 3 Hours

Part A

I. Answer any Eight guestions. Each guestion carries 1 weight

- 1. Let α be a vector in Fⁿ. Find the coordinate matrix of α relative to the standard basis of Fⁿ.
- 2. Verify whether (\mathbb{R}^n , \oplus , \cdot) with the two operations defined by $\alpha \oplus \beta = \alpha \beta$ and c. $\alpha = -c \alpha$ is a vector space.
- 3. If W is a k-dimensional subspace of an n-dimensional vector space V, then, show that W is the intersection of (n k)hyperspaces in V.
- 4. Define dual space of V and show that dim V* = dim V.
- 5. Prove that a linear transformation T is non singular if and only if, T is one-one.
- 6. For a 2x2 matrix A over a field prove that det(I+A)=1+detA if and only if trace(A) = 0.
- 7. Let D be a 2-linear function with the property that D(A) = 0 for all 2 X 2 matrices A over a commutative ring with identity, K, having equal rows. Then show that D is alternating.
- 8. Determine a 3×3 matrix for which the minimal polynomial is x^2 .
- 9. Define a projection of a vector space V. Suppose E is a projection and let R be the range of E and N be the null space of E. Then show that the vector β is in the range R if and only if $E^{\beta} = \beta$.
- 10. Prove that every matrix A such that $A^2 = A$ is similar to a diagonal matrix.

Part B

II. Answer any Six questions. Each question carries 2 weight

- ^{11.} Let W₁ and W₂ be subspaces of a vector space V such that W₁ + W₂ = V and W₁ \cap W₂ = {0}. Prove that for each vector α in V there are unique vectors α_1 in W₁ and α_2 in W₂ such that $\alpha = \alpha_1 + \alpha_2$.
- 12. Let $\mathfrak{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ be the ordered basis for \mathbb{R}^3 consisting of $\alpha_1 = (1, 0, -1)$, $\alpha_2 = (1, 1, 1)$ $\alpha_3 = (1,0,0)$. What are the coordinates of the vector (a, b, c) in the ordered basis \mathfrak{B} ?
- 13. If V and W are finite dimensional vector space over a field F, prove that V and W are isomorphic if and only if dim V = dim W.
- 14. Let T be a linear transformation from V into W where V and W are finite dimensional vector spaces over the field F. Show that rank $(T^{t}) = rank (T)$.
- 15. Prove that an n × n matrix A over a commutative ring with identity, K, is invertible if and only if det A is invertible in K.
- 16. Show that the determinant function on 2 X 2 matrices A over K, a commutative ring with identity, is alternating and 2linear as a function of the columns of A.

Reg. No :....

Name :....

(6x2=12)

Maximum Weight: 30

(8x1=8)

- 17. Let T be a linear operator on V, a finite dimensional vector space and *c* be a scalar. Then prove that the following statements are equivalent.
 - 1. c is characteristic value of T.
 - 2. The operator (T c I) is singular.
 - 3. |T cI| = 0.
- ^{18.} Find the minimal polynomial for T where T is a linear operator on R^3 which is represented in the standard ordered

basis by the matrix $\begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$.

Part C

III. Answer any Two questions. Each question carries 5 weight

- ^{19.} Let m and n be positive integers and let F be a field. Suppose W is a subspace of F^n and dim $W \le m$. Prove that there is precisely one m x n row reduced echelon matrix over F which has W as its row space.
- ^{20.} (a) V and W be finite dimensional vector spaces over the field F and let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be an ordered basis for V and let $\beta_1, \beta_2, \dots, \beta_n$ be any vectors in W. Then show that there is precisely one linear transformation $T: V \to W$ such that $T\alpha_j = \beta_j; j = 1, 2, \dots, n_j$.
 - (b) Let F be a field. $f: F^2 \to F$ is defined by $f(x_1, x_2) = ax_1 + bx_2$. Define $T: F^2 \to F^2$ as $T(x_1, x_2) = (-x_2, x_1)$. Compute $T^t f$.
- 21. State and prove the properties of determinants.
- 22. (a) Suppose T be a linear operator on the n dimensional vector space V and suppose that T has n distinct characteristic values. Prove that T is diagonalizable.

(b) Let V be a finite dimensional vector space over the filed F and let T be a linear operator on V. Show that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.

(2x5=10)