ΓM211520TR	Reg. No

Mama	
Hallic	

M. Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2021

[2021 Admissions Regular and 2020 Admissions Improvement & Supplementary]

SEMESTER I - CORE COURSE (MATHEMATICS)

MT1C05TM20 - ORDINARY DIFFERENTIAL EQUATIONS

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- Let u(x) be the nontrivial solution of u''+q(x)u=0 where q(x)<0 . Prove that u(x) has
- Find the adjoint equation of xy'' + (1-x)y' + py = 0. Is this equation self adjoint? Why? 2.
- $\frac{a}{dx}[xJ_1(x)] = xJ_0(x)$ 3.
- Write the expression for n^{th} Legendre polynomial $P_n(x)$. Write first three Legendre Polynomials .
- Find the value of $J_{\frac{-1}{2}}(x)$
- Check whether the function $-x^2-4xy-5y^2$ is positive definite, negative definite or neither. 6.
- $\begin{cases} \frac{dx}{dt} = y(x^2 + 1) \\ \frac{dy}{dt} = 2xy^2 \end{cases}$ Solve the equation to find the path 7.

- 8. Find the critical points of the system and solve the equation to find the path and sketch a few paths $\begin{cases} \frac{dx}{dt} = y(x^2 + 1) \\ \frac{dy}{dt} = -x(x^2 + 1) \end{cases}$
- 9. State Picard's Theorem. Why it is called a weak theorem.
- 10. Show that $f(x, y) = y^{1/2}$ satisfy a Lipschitz condition on the rectangle $|x| \le 1$ and $c \le y \le d$, where 0 < c < d.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. a) State Strum Seperation Theorem.
 - b) Let u(x) be the nontrivial solution of u''+q(x)u=0 . Describe the location of roots of the solution $u(x)_{if} q(x) > 0$ and q(x) < 0
- 12. Find the eigen values and eigen functions for the equation $y'' + \lambda y = 0; y(0) = 0, y(2\pi) = 0$
- $f(x) = \begin{cases} 0 & if -1 \le x < 0 \\ x & if \ 0 \le x \le 1 \end{cases}$ 13. Find the first three terms of Legendre series of
- 14. $e^{\frac{x}{2}(t-\frac{1}{t})} = J_0(x) + \sum_i J_n(x)[t^n + (-1)^n t^{-n}]$ Prove that

$$\begin{cases} x=x_1(t) & \{x=x_2(t) \\ y=y_1(t) & \text{and} \end{cases} \\ y=y_2(t) \\ \text{of the homogeneous system}$$

$$\begin{cases} \frac{dx}{dt} = a_1(t)x + b_1(t)y \\ \frac{dy}{dt} = a_2(t)x + b_2(t)y \end{cases}$$

are linearly independent on [a,b]. Prove that
$$egin{dcases} x=c_1x_1(t)+c_2x_2(t) \ y=c_1y_1(t)+c_2y_2(t) \end{cases}$$

is the general solution of this homogeneous system on the same interval.

16.

Find the general solution of
$$\begin{cases} rac{dx}{dt} = x + y \\ rac{dy}{dt} = 4x - 2y \end{cases}$$

- 17. Describe Picard's method of successive approximation
- 18. Solve the initial value problem by Picard's method and compare the result with the exact solution

$$\frac{dz}{dx} = -y; z(0) = 0$$

$$\frac{dy}{dx} = z; y(0) = 1$$

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. a) State and prove Strum Comparison Theorem.
 - b) Find the normal form of Bessel's equation $x^2y'' xy' + (x^2 p^2)y = 0$ and use it to show that every non trivial solution has infinitely many positive zeros
- 20. a) State and prove the orthogonality properties of Legendre Polynomials
 - b) Derive the formula for the coefficients a_n in the Legendre series.

21.

$$\begin{cases} \frac{dx}{dt} = a_1 x + b_1 y \\ \frac{dy}{dt} = a_2 x + b_2 y \end{cases}$$

 $m_1\ and\ m_2$ be the roots of the auxillary equation of the system

major and border line cases of the nature of roots

22.

$$f(x,y)$$
 and $\frac{\partial f}{\partial y}$

be continuous functions of x and y on a closed rectangle R with sides parallel

to the axes. If (x_0, y_0) is any interior point of R then prove that there exists a number h>0 with the property that the initial value problem

$$y'=f(x,y)$$
 $y(x_0)=y_0$ has one and only one solution $y=y(x)$ on the interval $|x-x_0|\leq h$