M211510TR	Reg. No :

Name :....

M. Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2021

[2021 Admissions Regular and 2020 Admissions Improvement & Supplementary] SEMESTER I - CORE COURSE (MATHEMATICS)

MT1C04TM20 - COMPLEX ANALYSIS

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Verify that the point i is to the left of the positively oriented real axis and i is to the right of the positively oriented real axes.
- 2. Define conformal mapping and give an example.
- 3. Prove that the reflection $z \to \bar{z}$ is not a linear transformation.
- 4. If $a \le b$, then show that $\left| \int_a^b f(t) dt \right| \le \int_a^b |f(t)| dt$.
- 5. Evaluate $\int_{|z-a|=r} \frac{1}{z-a} dz$
- 6. If f(z) and g(z) are analytic in Ω and if f(z) = g(z) on a set which has an accumulation point in Ω then show that f(z) is identically equal to g(z) in Ω .
- 7. Derive Cauchy's estimate.
- 8. Define residue of a function. Find the residue of f(z) = $\overline{z^2 + 5z + 6}$ at its poles.
- 9. Explain (a) Homologous to zero (b) Locally Exact Differentials.
- 10. $\frac{e^z}{(z-a)(z-b)}$ at its pole when $a \ne b$ and a = b.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Prove that for a stereographic projection any circle on the sphere corresponds to a circle or a straight line in the z plane.
- 12. Prove that an analytic function in a region Ω whose modulus is a constant must reduce to a constant.
- 13. Show that the general line integral $\int_{\gamma} p \, dx + q \, dy$ depends only on the end points of γ iff the integral over any closed curve is zero.
- 14. Evaluate $\int_{|z|=2} \frac{dz}{z^2-1}$ for the positive sense of the circle.
- 15. Show that an analytic function comes arbitrarily close to any complex value in every neighborhood of an essential singularity.
- 16. If f(z) is analytic for |z| < 1 and satisfies the conditions $|f(z)| \le 1$, f(0) = 0, then show that $|f(z)| \le |z|$ and $|f'(0)| \le 1$. Further, if |f(z)| = |z| for some $z \ne 0$ or if |f'(0)| = 1 then show that f(z) = c z with a constant c of absolute value 1.

- 17. Let f(z) be analytic except for isolated singularities a_j in a region Ω . Then show that $\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_j n(\gamma, a_j) \operatorname{Res}_{z=a_j} f(z)$ for any cycle γ which is homologous to zero in Ω and does not pass through any of the points a_i .
- 18. $\int_{-\pi}^{\pi} \frac{dx}{1 + sin^2 x}$

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. (a) Discuss the uniform convergence of the series $\sum_{1}^{\infty} \frac{x}{n(1+nx^2)}$ for real values of x.
 - (b) Show that the cross ratio of four points is invariant under a linear transformation.
- 20. (a) State and prove Cauchy's theorem in a disk with exceptional points.
 - (b) Compute $\int_{|z|=1} |z-1| |dz|$
- 21. (a)Suppose that f(z) is analytic at z_0 , f (z_0) = w_0 and that f(z) w_0 has a zero of order n at z_0 . If ε >0 is sufficiently small prove that there exists a corresponding δ >0 such that for all 'a' with $|a-w_0| < \delta$ the equation f(z) = a has exactly n roots in the disk $|z-z_0| < \varepsilon$.
 - (b) State and prove the Schwarz's lemma.
- 22. (a) Use Residue theory to evaluate $\int_0^\infty \frac{x^2 dx}{(x^2 + a^2)^3}$
 - (b) Evaluate $\int_0^{\pi} \log \sin \theta \ d\theta$