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Chapter 1

INTRODUCTION AND

HISTORICAL OUTLINE

1.1 INTRODUCTION

Spectral graph theory is a branch of mathematics that studies graphs by using

spectral properties of a graph and its associated matrices.

Spectral graph theory is the study of properties of a graph in relation to the

characteristic polynomial, Eigenvalues and eigenvector’s of matrices associated

with the graph, such as its adjacency matrix or laplacian matrix. The adjacency

matrix of an undirected graph is a real symmetric matrix and it is orthogonally

diagonalize. Also its eigenvalues are real algebraic integers. It also depends upon

the vertex labelling and its spectrum is graph invariant. L. Collatz and U. Sino-

gowitz first began the exploration of this topic in 1957. Originally spectral graph

theory analyses adjacency matrix of a graph, especially its eigenvalues. Central

goal of graph theory is to deduce the main properties and structure of a graph

from its invariant. The eigenvalues are strongly connected to almost all key in-

variant of a graph. They hold a wealth of information about graphs. This is what

spectral graph theory concentrates on.

There are numerous applications of mathematics specifically spectral graph

theory with in science and many other fields. This paper is an exploration of

recent application of spectral graph theory. The main focus is on the characteristic
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polynomial and eigenvalues that it produces. Because most of the applications

involve specific eigenvalues. For example in chemistry non saturated hydrocarbons

are represented by graphs. The energy level of electrons in such molecules are the

eigenvalues of corresponding graph. The stability of the molecule as well as other

chemically relevant facts are closely connected with graph spectrum and their

eigenvalues

1.2 HISTORY

In mathematics origin of graph theory can be traced to 1735, when the Swiss math-

ematician Leonardo Euler solved the Kornberg bridge problem. graph theory

is a study of graphs which are mathematical structures used to model pairwise

relations between objects. Graph theory is also important in life.

Spectral graph theory is a branch of mathematics.Spectral graph theory emerged

in 1950s and 1960s. It is a relationship between structural and spectral proper-

ties of a graphs. Besides graph theoretic research on the relationship between

structural and spectral properties of graph, another major source was research in

quantum chemistry, the 1980 monograph spectra of graph by Doob and Sachs

summarised nearly all research to date in the area. In 1988 it was updated by

Recent results in the theory of graph spectra. The 3rd edition of spectra of graph

contains summary of the contributions to the subject

.

Dis create geometric analysis created and developed by Toshikazu Sunanda

in the 2000s deals with spectral graph theory in terms of dis create laplacian

associated with graphs and find applications in various field. In most recent years

spectral graph theory has expanded to vertex varying graphs often encountered in

many real- life applications.

2



Chapter 2

PRELIMINARIES

2.1 GRAPHS

A graph G is a finite non empty set of points called vertices and together with

a set of ordered pair of distinct vertices called edges. the set of edges may be

empty. The degree of a vertex is the no of edges incident on it. A graph is regular

all vertices have equal degree and complete each pair of vertices joined by an edge.

Two vertices are adjacent there is an edge connecting them. The cardinality of

vertex set is called order of G. The cardinality of edge set is called size of G. A

walk ViVj is a finite sequence of adjacent vertices that begins at vertex Vi and ends

at vertex Vj.

A simple graph is an undirected graph in which no parallel edges and no loops.

An undirected graph whose edges are not directed.

A directed graph is a graph in which the edges are directed by arrows.

Two vertices are joined by more than one edge becomes a multi graph. When a

pair of vertices is not distinct then there is a self-loop. A graph admits multiple

edges and loops is called a Pseudo-graph.

Graphs G and H are said to be Isomorphic graph G, If there is a vertex

bijection f : V (G) → V (H).

such that for all u,v belongs to V(G). u and v are adjacent in G if and only if F(u)

and F(v) are adjacent in H.
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2.2 SOME GRAPH THEORETIC DEFINITIONS

There are a great deal of importance and applications in representing a graph

G in its matrix form. One of the key ways to do this is through the adjacency

matrix A. The rows and columns of adjacency matrix represent the vertices and

the elements tell whether there is an edge between any two vertices. Given an

element aij

aij =

1 ifai and aj are connected

0 otherwise.
(2.1)

Adjacency matrix:

Let G be a graph. The adjacency matrix G denoted by A(G) whose rows and

columns are indexed by the vertices where u v entry is equal to the number of

edges between u and v. A(G) is a real symmetric matrix whose diagonal entries

are equal to zero. Example of adjacency matrix is given below,

Adjacency matrix of above graph is given by


0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0


Note that the diagonal of an adjacency matrix of a graph contains only zeros

because there is no self-loops. Our graph has no multiple edges or loops. This

cause the trace of adjacency matrix, written by tr(A), the sum of its main diago-

nal, to be zero.Also when A represent a graph, it is square, symmetric and all of

the elements are non negative.
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The Laplacian:

The Laplacian is an alternative approach to the adjacency matrix. Laplacian

L of a graph is the square matrix that correspond to the vertices of a graph. The

main diagonal of the matrix represents the degree of the vertices.

Aij =

−1 ifvi and vj are adjacent

0 otherwise.
(2.2)

Laplacian also derived from D-A where D is the diagonal matrix whose entries

represent the degree of the vertices and A is the adjacency matrix.

Example of a laplacian matrix is given below


1 −1 0 0

−1 3 −1 −1

0 −1 2 −1

0 −1 −1 2

.

Characteristic polynomial: The characteristic polynomial of a graph of

order n is the determinant of (λI − A),

where I is a n n x n identity matrix.

The general form of a characteristic polynomial is

λn + C1λ
n−1 + . . . . . . + Cnλ

n (2.3)

Example Consider the matrix given below:
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0 1 1

1 0 1

1 1 0

.

det(λI − A)=

det


λ 0 0

0 λ 0

0 0 λ

 −


0 1 1

1 0 1

1 1 0

 = det


λ −1 −1

−1 λ −1

−1 −1 λ

 = λ3 − 3λ2 − 2 (2.4)

The coefficients of the characteristic polynomial is that coincide with the ma-

trix A of a graph G has following characteristic

• c1 = 0

• −c2 is the number of edges of G

• −c3 is twice the number of triangles in G

The characteristic polynomial is enormously important in spectral graph the-

ory. Because it is an algebraic construction that contain graphical information. It

will be more explored in chapter3.

The root of a characteristic polynomial is eigenvalues. From the above exam-

ple the characteristic polynomial

λ3 − 3λ2 − 2 (2.5)

equal to zero and solving gives the eigenvalue -1,-1,2.

Eigenvalues are the heart of understanding the properties and structure of graph.

Connected: A graph is connected if for every pair of vertices u and v ,there is a

walk from u to v.

A tree is a connected graph that has no cycles.
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A spanning tree of a graph is a spanning sub graph that is a tree.

The complexity of G denoted by k(G),is the number of spanning trees of G.

Bipartite graphs-

A bipartite graph G is one whose vertex set V can be partitioned into two

subset U and W such that each edge of G has one end point in U and one in W

. the pair U,W is called bi partition of G and U and W are called bi partition

subset .

The spectrum of a bipartite graph is symmetric around 0.

Theorem: If G is a bipartite graph λ is an eigenvalue and −λ is also an eigen-

value

Proof : let G be a bipartite graph. U = u1u2. . . . . . un and W = w1w2. . . wn.

where u and w are partite set of V(G). then all edges are of the form uiwj where

ui belongs to U and wj belongs to W. also no edges go from ui to uj or wi to wj.

This makes the adjacency matrix of G

A=

 0 B

Bt 0

.

where B is an n by m matrix.becauseλ is an eigenvalue.we know Av = λv.so 0 B

Bt 0

x

y

 = λ

x

y

 (2.6)

using simple matrix multiplication By = λx.

Multiplying both sides by negative one we get B(−y) = −λx. The second

equation that results from the matrix multiplication is Btx = λ y and λy = −λ−y.

Btx = −λ− y.This gives the matrix equation 0 B

Bt 0

x

y

 = −λ

x

y

 (2.7)

giving us the eigenvalue −λ.

Corollary: The spectrum of a bipartite graph is symmetric around zero.

Complete graph : A complete is one in which every pair of vertices is joined by

an edge. The complete graph kp is determined by its spectrum.
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Eigenvalues of graph: For a matrix A in Rn∗n, a number λ is an eigenvalue if for

some vector x not equal to zero Ax = λx. The vector x is called an eigenvectors

corresponding to λ.The sum of all eigenvalues if a graph is always zero.

2.3 ALGEBRAIC MULTIPLICITY AND GEOMETRIC

MULTIPLICITY:

Algebraic multiplicity of an eigenvalue is the no of times that the value occurs

as a root of characteristic polynomial.

Geometric multiplicity is the dimension of eigen space or subspace spanned by

all of its eigenvectors.

Theorem: If a matrix is real symmetric, each eigenvalue of the graph relating to

the matrix is real.

Proof : The proof follows from spectral theorem from linear algebra. A be a real

symmetric matrix. There exist an orthogonal matrix Q such that A = QAQ−1 =

QAQT , where A is a real diagonal matrix, the eigenvalue of A appear on the

diagonal of A, while the columns of Q are the corresponding eigenvectors. The

entries of an adjacency matrix are real and adjacency symmetric. Therefore, all

the eigenvalues of an adjacency matrix are real.

The geometric and algebraic multiplicity of each eigenvalue of a real symmetric

matrix is equal.

If a graph is connected the largest eigenvalue has multiplicity of one.
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Chapter 3

SPECTRAL GRAPH THEORY

3.1 SPECTRAL GRAPH

spectral graph theory is the study of properties of a graph in relation to the

characteristic polynomial, eigenvalues and eigen vectors of a matrices associated

with the graph. Main matrix used in this theory is adjacency or Laplacian matrix.

Co spectral graph: The construction of co spectral graphs has been promi-

nent in the theory of graph spectra. There are two methods of constructing the

co spectral graphs. One method is a kind of ‘cut and paste’: a piece of graphs

is excised and replaced by a new piece in such a way that the spectrum is un-

changed, but the new graph is not isomorphic to old one. Second method is

‘product method’. Products of graphs are taken.

Two graphs are called co spectral they have same spectrum.co spectral graphs

need not be isomorphic, but isomorphic graphs are always co spectral.

Examples

Almost all trees are co spectral.

A pair of regular graphs are co spectral if and only if their complements are co

spectral.

A pair of distance regular graph are co spectral if and only if they have same

intersection array.

Another important sources of co spectral graphs are the point col-linearity graphs
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and line intersection graphs. These graphs are always co spectral but non isomor-

phic.

3.2 SPECTRUM OF A GRAPH

The spectrum of a real symmetric matrix is the list of its eigenvalues, where each

eigenvalue with multiplicity k appears k times in the list. If matrix is n x n then

its spectrum has length n.

Definition

The spectrum of a graph G is a set of eigenvalues of G together with their

algebraic multiplicities or the number of times that they occur”.

Graphs determined by their spectrum:

A graph G is said to be determined by their spectrum if any other graph with

the same spectrum as G is isomorphic to G.

Some examples of a families of graphs that are determined by their spectrum in-

clude:

• The complete graph

• The finite star like trees

if a graph has k distinct eigenvalues λ1 > λ2 > . . . λk with multiplicitiesm(λ1) . . .m(λk).

Then the spectrum of G can be written as

spec(G)=

 λ1 λ2 . . . λk

m(λ1) m(λ2) . . .m(λk)

.

Example of a spectrum of a graph
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corresponding matrix of above figure is given below
0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


The characteristic polynomial is 4λ4 − 4λ2

with eigenvalues 0 0 2 -2. Our graph has 3 distinct eigenvalues -2,0 and 2. Hence

the spectrum of the graph G is

spec(G)=

−2 0 2

1 2 1

.

One consistent question in graph theory is when is a graph characterised by its

spectrum? Properties that cannot be determined by spectrally can be determined

by compare two non isomorphic graphs with the same spectrum.

It is clear that two graphs are structurally different with different adjacency ma-

trices and they have same spectrum.

3.3 SPECTRAL CHARACTERIZATIONS OF CERTAIN

GRAPHS

Given the spectrum or some spectral characteristic of a graph, determine all graph

from a given class of graphs having the given spectrum, or the given spectral char-

acteristics.

In this sections describe some cases in which graphs are characterized by their

spectra. All graphs in this section is finite un directed and simple.

Definition

We say that a graph is characterized by its spectrum if the only graphs are

co spectral with G and isomorphic to G. Examples include complete graphs and

graph with one edge.

Given spectrum of a graph G we can always establish whether or not G is reg-
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ular.it follows that if G or G is regular of degree one then G is characterized by

their spectrum.

Remark: Any regular graph of degree 2 is characterized by their spectrum.

for each positive integer n, the complete graph Kn, n is characterised by their

spectrum.

Spectrum of complete graph: let us consider the complete graph Kn on n

vertices. Its adjacency matrix is A=J-I.

A=


0 1 1 . . . 1

1 0 1 . . . 1

. . .

1 1 1 . . . 0


λw = w + w2 + · · ·+ wn−1 (3.1)

n-1 if w=1

-1 if w̸= 1

spec(kn)=n− 1 −1

1 n− 1

.

Spectrum of cycle: let us consider the directed n cycle Dn.Eigenvectors

are 1, λ . . . λn−1. where λn = 1 and the corresponding eigen value is λ. Thus the

spectrum consist precisely the complex n roots of unity e2Πij/n. (j = 0, 1 . . . n−1).

Consider the undirected n cycle Cn. Then A = B+BT .B is the adjacency matrix

of Cn.so that the spectrum consist the numbers 2cos(2Πj/n). (j = 0, 1 . . . n− 1).

The graph is regular of valency 2. So the laplacian spectrum consist the numbers

2− 2cos(2Πj/n).

Spectrum of the path: Consider the undirected path Pn. The ordinary

spectrum consist of the numbers 2cos(Πj/(n + 1)). (j = 0, 1 . . . n). the laplacian

spectrum is 2− 2cos(Πj/n).(j = 0, 1 . . . n− 1).
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3.4 THE LAPLACIAN

The Laplacian: The Laplacian is an alternative approach to the adjacency ma-

trix. The Laplacian L of a graph is the square matrix that correspond to the

vertices of a graph. The main diagonal of the matrix represents the degree of the

vertices. LG = -1 if vi and vj are adjacent 0 otherwise. The Laplacian also derived

from D-A where D is the diagonal matrix whose entries represent the degree of

the vertices and A is the adjacency matrix.

Theorem: The smallest eigenvalue of L is zero.

Proof : This is a direct result from the Laplacian matrix being a positive semi

definite matrix. It will have n real Laplacian eigenvalue 0 =λ1≤λ2≤ . . . λm

(positive semi definite matrix whose eigen values are non-negative).

* Basic properties of Laplacian matrix

For a graph G = (V, E), LG = ΣLG(u, v). The eigen values of Laplacian matrix

are real by realising that the Laplacian matrix of a graph is symmetric and consist

of all entries. Therefore, LG is self-ad joint. By the following theorem all eigen

values of LG are real.

Theorem: The eigen values of a self ad joint matrix are real.

Proof : Suppose λ is an eigen value of a self-ad joint matrix L. V is nonzero vector

of λ. Then

λ norm V2 =λ < v, v >

< λv, v >

=< Lv, v >

=< v,Lv >

=< v, λv >

=λ < v, v >

=λ norm V2.

Here v ̸= 0.

Norm v2 ̸= 0.

This proves that λ is real.
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Remark: For a graph G eigen value LG is non negative. The Laplacian of Kn

has eigen value zero with multiplicity 1 and eigen value n with multiplicity n− 1.

When we have a k regular graph a graph whose vertices all have degree k then

there is linear relationship between eigen values of laplacian and eigenvalues of

adjacency matrix A. if θ1θ2 . . . θn are the eigen values of L and λ1λ2 . . . λn are the

eigen values of A. Then θi = k−λi this is a result of a graph being a regular graph.

Giving us the relationship L=k I-A between the laplacian and adjacency matrix.

No such relationship exists between the eigenvalues of laplacian and adjacency

matrix of a non-regular graph.

Theorem:The algebraic connectivity is positive if and only if the graph is

connected.

proof : If λ2 > 0 and λ1 = 0 then G must be connected. Because the eigen values

of Laplacian are zero 0 =λ1≤λ2≤ . . . λm

This is direct result from the above theorem . If G is connected, then zero is the

smallest eigenvalue. λ2 must be greater than zero and therefore positive.
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Chapter 4

APPLICATIONS OF

SPECTRAL GRAPH THEORY

4.1 LAPLACIAN MATRIX AND ITS SPECTRUM

The Laplacian matrix, its spectrum and its polynomials are discussed in this sec-

tion.

The Laplacian matrix L=L(G) of a simple graph G is defined as L = V − A

A is the adjacency matrix and V is the degree of the matrix.

For example, Laplacian matrix of a tree T, depicting the carbon skeleton of 2,4

Di-methyl hexane is given below

.

The Laplacian matrix is a real symmetric matrix. The diagonalization of the

Laplacian matrix of a graph G with N vertices gives N real eigenvalues xi =

1, 2 . . . N . The set of eigenvalues is referred to as the spectrum of the laplacian

matrix of G or Laplacian spectrum of G . The smallest member of the laplacian

spectrum is x1 is always equal to zero. Conventionally, the laplacian eigenvalues
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are given in increasing order. 0 = x1 ≤ x2 ≤ . . . xN The Laplacian spectrum of

the complete graph KN shows the following pattern: [0, N,N,N . . . ].

Thus, we can immediately write down the Laplacian spectrum of the kura-

towski graph k5 as

.

[0, 5, 5, 5, 5].

In case of regular graphs, the eigenvalues xi(L) of the Laplacian matrix are

related to eigenvalues xi(A) of the corresponding adjacency matrix as follows

Xi(L) = D − xi(A).

D is vertex degree in a regular graph.

The Laplacian spectrum has number of interesting properties. It can be used

to compute number of spanning trees of a poly cyclic graph G and also to find the

energy of a graph.

4.2 SPANNING TREES

The number of spanning trees of a graph can be calculated by using the simple

formula based on the matrix tree theorem. “Let i and j be the vertices of a graph

G and Lij be the sub matrix of the Laplacian matrix G obtain by deleting the row

i and the column j. Then the absolute value of the determinant of Lij is equal to

the number of spanning trees t(G) of G.

t(G) = det|(Lij)|

t(G) = (1/N)Πxi

where t(G) is the no of spanning trees of G.
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Example

1. consider a naphthalene graph G and the Laplacian matrix is given below

.

2. The Laplacian spectral values are computed using python program given by

“Import numpy as np

A=np.array([[2,-1,0,0,0,0,0,0,0,-1],[-1,2,-1,0,0,0,0,0,0,0],[0,-1,2,-1,0,0,0,0,0,0],[0,0,-1,2,-

1,0,0,0,0,0],[0,0,0,-1,3,-1,0,0,0,-1],[0,0,0,0,-1,2,-1,0,0,0],[0,0,0,0,0,-1,2,-1,0,0],[0,0,0,0,0,0,-

1,2,-1,0],[0,0,0,0,0,0,0,-1,2,-1],[-1,0,0,0,-1,0,0,0,-1,3]])

w =np. Lina lg .eig(A)

print(w)”

3. Using this method, we get eigenvalues of the Laplacian matrix. The set of

eigenvalues is referred to as Laplacian spectrum.

Laplacian spectrum is

[0.0000,0.3820,0.8851,1.3820,1.3820,2.6180,3.2541,3.6180,3.6180,4.8608]

4. Using this laplacian spectral values we can count the spanning trees of a

graph given by the equation t(G) = (1/N)Πxi.

Spanning trees of naphthalene graph is given by

t(G) = (1/N)Πxi=

(1/10) [0.0000×0.3820 × 0.8851 × 1.3820 × 1.3820 × 2.6180 × 3.2541 × 3.6180 ×

3.6180] = 35.
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4.3 ENERGY OF A GRAPH

The energy E(G) of a graph G is defined as follows

”G be a graph with n vertices and its spectrum consist the numbers λ1, λ2 . . . λn

then E = E(G) = Σ|γi|

L(G) denote the Laplacian energy of a graph G which is defined as sum of absolute

values of the eigenvalues of a graph G, L(G) = Σ|γi| where γi be the eigenvalues

of G.”

5. From the above example energy of naphthalene graph G is E(G)= Σ

[0.0000+0.3820+0.8851+1.3820+1.3820+2.6180+3.2541+3.6180+3.6180+4.8608] =

22.
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