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INTRODUCTION

A module is one of the fundamental algebraic structures used in ab-

stract algebra. A module over a ring is a generalization of the notion

of vector space over a field, wherein the corresponding scalars are el-

ements of an arbitrary given ring (with identity) and a multiplication

(on the left or on the right) is defined between elements of the ring and

the elements of the module. In simple words, we can say that it’s an

abelian group with distributive action of a ring. A module is a gener-

alized form of vector space over the field K, where K be replaced by a

ring.

The simplest examples of modules (finite abelian groups - they are

z-modules) were already known to C.F. Gauss as class groups of bi-

nary quadratic forms. The general notion of a module was first en-

countered in the 1860’s till the 1880’s in the work of R. Dedekind and

L. Kronecker, devoted to arithmetic of algebraic numbers and func-

tion fields. At approximately the same time, the research on finite-

dimensional associative algebras, in particular, group algebras of finite

groups (B. Pierce, F. Frobenius), led to the study of ideals of certain

non-commutative rings. At first, the theory of modules was developed

primarily as a theory of ideals of a ring. Only later, in the work of E.

Noether and W. Krull, it was observed that it was more convenient to

formulate and prove many results in terms of arbitrary modules, and

not just ideals. Subsequent developments in the theory of modules were

connected with the application of methods and ideas of the theory of

categories, in particular, methods of Homological algebra.

This dissertation aims in giving an elementary introduction to the

module theory. First, we discuss some of the familiar concepts, we been

studied, and recollecting all such previous topics under modules , then

some of the basic definitions regarding modules, along with some ex-

amples and properties. We can see how vector spaces are viewed as

modules. The concept of sub-modules is also discuss detaily. Then we

move on , about the discussion on module homomorphisms. In the next

chapter, it’s on classification of modules. The major classifications of
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modules I introduce in this dissertation are Free modules, Simple mod-

ules, Quotient modules, Modules over PID’s, and Cyclic modules. And

finally we conclude this study on modules by a discussion of Modules

with chain conditions on its rings. It is actually a 6 continuation of

the previous chapter, as we have mentioned there about some modules

which falls under this category. Modules discussed in his chapter are

Artinian modules, Noetherian modules, and Modules of finite length.

With the discussion of these aspects of Modules, we will get a deep

study on modules through this dissertation.
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Chapter 1

Preliminaries

Basic Definitions and Concepts

1.1 Group Theory

Definition 1.1.1. A Group (G,*) is a set G, closed under binary

operation *, such that the following axioms are satisfied.

1) For all a, b, c ∈ G we have (a * b) * c = a * (b * c)

2) There is an element e ∈ G such that for all x ∈ G,

e * x = x * e = x

3) Corresponding to each a ∈ G, there is an element a 0 in G such

that a * a 0 = a 0 * a = e

Definition 1.1.2. A group G is abelian, if its binary operation is

commutative.

Theorem 1.1.1. If G is a group with binary operation *, then

a*b = a*c implies b = c and b * a = c * a implies b = c for all a, b, c ∈ G.

Theorem 1.1.2. If G is a group with binary operation and if a and

b are any elements of G, then the linear equations a * x = b,

y * a = b have unique solutions x and y in G.

Definition 1.1.3. If a subset H of a group G is closed under the

binary operation of G and if H with the induced binary operation from

3



G is itself a group, then H is a subgroup of G.

Definition 1.1.4. Let G be a group and let a ∈ G.

If G = {an : n∈ N}, then G is called a Cyclic Group Generated by a,

and is denoted by ,< a>.

1.2 Ring Theory

Definition 1.2.1. A ring <R, +, .> is a set R together with two binary

operations + and ., which we call addition and multiplication respec-

tively, defined on R such that the following axioms are satisfied:

1) <R , +>is an abelian group.

2) Multiplication is associative.

3) For all a, b, c ∈ R, the lef t distributive law, a.(b+c) = (a.b)+

(a.c) and the right distributive law (a + b).c = (a.c) + (b.c) hold.

Some basic properties of a ring follow immediately from the axioms:

• The additive identity is unique.

• The additive inverse of each element is unique.

• The multiplicative identity is unique.

• For any element x in a ring R, one has x0 = 0 = 0x (zero is an

absorbing element with respect to multiplication) and (-1)x = -x.

• If 0 = 1 in a ring R (or more generally, 0 is a unit element), then

R has only one element, and is called the zero ring.

• If a ring R contains the zero ring as a subring, then R itself is the

zero ring.[6]

• The binomial formula holds for any x and y satisfying xy = yx.

Theorem 1.2.1. If R is a ring with additive identity 0, then for any

a, b ∈ R, we have,

1. 0a = a0 = 0

2. a(-b) = (-a)b = -(ab)

3. (-a)(-b) = ab

4



Definition 1.2.2. A ring in which multiplication is commutative is a

commutative ring. A ring with a multiplicative identity element is a

ring with unity; the multiplicative identity element 1 is called ”unity”.

Definition 1.2.3. An element a in a ring R with identity is said to

be left invertible, if there exists c ∈ R such that ca = 1R. The element

c is called left inverse of a. Similarly, an element a in a ring R with

identity is said to be right invertible, if there exists b ∈ R such that

ab = 1R. The element b is called right inverse of a. An element that is

both left and right invertible is said to be a unit.

Definition 1.2.4. A commutative ring R with identity 1R ̸= 0 and no

zero divisors are called an integral domain. A ring D with identity

1D ̸= 0 in which every nonzero element is a unit is called a division ring.

A field is a commutative division ring.

Remarks 1.2.1 . 1. Every integral domain and every division ring

has atleast two elements (namely 0 and 1)

2. A ring R with identity is a division ring if and only if the nonzero

elements of R form a group under multiplication.

Definition 1.2.5. Let R be a ring.If there is a least positive integer

n such that na = 0 for all a ∈ R , then the least value of n is the

characteristic of R. If no such n exists, then R is said to have charac-

teristic zero.

Definition 1.2.6. Let R be a ring and S a non empty subset of R that

is closed under the operations of addition and multiplication in R. If S

is itself a ring under these operations, then S is called a subring of R.

Definition 1.2.7. A subring I of a ring R is a left ideal provided

r ∈ R and x ∈ I → xr ∈ I. I is an ideal if it is both left and right ideal.
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Definition 1.2.8. If R is a commutative ring with unity and a ∈ R,

the ideal {ra : r ∈ R} of all multiples of a is the principal ideal gener-

ated by a, and is denoted by <a>. An ideal N of R is a principal ideal

if N = <a> for some a ∈ R.

Definition 1.2.9. An integral domain D is called a principal ideal do-

main if every ideal in D is a principal ideal.

Definition 1.2.10. 1. A maximal ideal of a ring R is an ideal M different

from R such that there is no proper ideal N of R properly containing

M.

2. An ideal N ̸= R in a commutative ring R is a prime ideal if

ab ∈ N implies that either a ∈ N or b ∈ N for a, b ∈ R

1.3 Homomorphisms

Definition 1.3.1. For groups < G, ∗ > and < H,⊕ >, a homomorphism

from < G, ∗ > to < H,⊕ >is a map ϕ : G→ H such that

ϕ(a ∗ b) =ϕ(a)⊕ ϕ (b) It is simply expressed as ϕ(ab) = ϕ(a)ϕ(b) with the

understanding of the respective operations.

Definition 1.3.2. For rings R and R’, a map ϕ: R → R’ is a homo-

morphism, if the following two conditions are satisfied for all a, b ∈ R :

1. ϕ (a + b) = ϕ (a) + ϕ (b)

2. ϕ (ab) = ϕ (a)ϕ (b)

Definition 1.3.3. If R and R’ are rings, and ϕ : R → R’ is a

homomorphism, then the kernal of ϕ denoted by Kerϕ is the set of all

elements in R which are mapped to the additive identity of R’ by ϕ .

That is, Kerϕ = {a ∈ R;ϕ (a) = 0’ } where 0’ is the additive identity of

R’.
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Definition 1.3.4. An isomorphism ϕ : R → R’ , where R and R’ are

rings, is a homomorphism that is one to one and onto R. The rings R

and R’ are isomorphic, if there is an isomorphism of R onto R’ .

Definition 1.3.5. A ring homomorphism f : R → S is called :

1. a meromorphism if f is one-one

2. an epimorphism if f is onto

3. an isomorphism if f is one-one and onto

4. an endomorphism if R = S

5. an automorphism if R = S and f is an isomorphism.

Definition 1.3.6. Let f : R → S and g : S → T be two

homomorphisms. Then, the following are true:

1. g ◦ f : R → T is a homomorphism

2. g ◦ f is an isomorphism if both g and f are isomorphisms. The

converse is not true.

Definition 1.3.7. A non-empty set X with partial order ’≤’ is called

a poset. i.e., ’≤’ satisfies the following:

1. Reflexivity : x ≤ x, ∀x ∈ X

2. Anti symmetry : x ≤ y and y ≤ x ⇒ x = y

3.Transitivity : x ≤ y and y ≤ z ⇒ x = y

A subset Y of X is called a chain or said to be totally ordered if any two

elements of Y are comparable, i.e., given x, y ∈ Y , either x ≤ y or y ≤ x.

Definition 1.3.8. A subset A of X is said to be bounded above if there

is an a ∈ X such that x ≤ a for all x ∈ A. Such an a is called an upper

bound for A in X. It need not belong to A.

7



Definition 1.3.9. A subset A of X is said to have maximal element

if there is an a ∈ A such that a not less than x for all x ∈ A, x ̸= a. A

partially ordered set where every totally ordered subset of it is bounded

above has an interesting property.
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Chapter 2

Module

2.1 Definition and examples

The concept of module over a ring R is a generalization, be the concept

of vector space over a field.

Definition 2.1.1. Let R be any ring. A left R module M, is an abelian

group (M, +) together with a map R × M; (a, x) → ax called scalar

multiplication or structure map such that

1. a(x + y) = ax + ay, ∀ a ∈ R and x, y ∈ M

2. (a + b)x = ax + bx, ∀ a, b ∈ R, and x ∈ M

3. (ab)x = a(bx), ∀ a, b ∈ R and x ∈ M

Elements of R are called scalars. Note that the ring R can be with

or without 1 and commutative or not. For convenience, we adopt the

notations [0M ] and [0R] for the identities of group M and R respectively

Definition 2.1.2. If R is a ring with unity, a left R module M is said to

be a unitary left R module if

1 . x = x, ∀ x ∈ M

Definition 2.1.3. An abelian group (M, +) is called a right R mod-

ule if there is a map from M ×R → M, denoted by (x, a) → xa such that

9



1. (x + y)a = xa + ya, ∀ ∈ R and x, y ∈ M

2. x(a + b) = xa + xb, ∀ a, b ∈ R and x ∈ M

3. x(ab) = (xa)b, ∀ a, b ∈ R and x ∈ M

Proposition 2.1.1. For an abelian group M, let Endz(M) be the ring

of all (additive) endomorphisms of M. Let R be any ring. Then we

have the following:

1. M is a left R-module if and only if there exists a homomorphism

of rings ψ : R → EndzM

2. M is a right R-module if and only if there exists an anti-homomorphism

of rings ψ : R → Endz(M), i.e.,ψ0is additive and reverses the

multiplication.

3. M is R-unitary if and only if ψ(1R) =idM

Proof. (1) Let M be a left R-module and R × M → M be structure

map, which we denote by (a, x) → x.

Now define ψ : R → EndzM by a → ψ(a) ; M → M is given by x → ax,

i.e., ψ(a)(x) = ax for all a ∈ R and x ∈ M.

Claim : ψ is a homomorphism of rings. Let a, b ∈ R and x ∈ M.

We have,

ψ(a + b)(x) = (a + b)x

= ax + bx

= ψ(a)(x) + ψ(b)(x)

=[ψ(a) + ψ(b)](x)

This implies that ψ(a+b) = ψ(a) + ψ(b).

Similarly, we have,for x ∈ M,

ψ(ab)(x) = (ab)(x)

= a(bx)

= a(ψ(b)(x))

=ψ(a)(ψ(b)(x))

= (ψ(a)◦ψ(b))(x)

This implies that ψ(ab) = ψ(a)ψ(b).

Therefore ψ is a homomorphism of rings. Conversely, suppose

10



ψ : R → Endz(M) is a homomorphism of rings. Now, define the scalar

multiplication by,

R × M → M; (a, x) → ax = (ψ(a))(x)

Claim : This defines the left R-module structure on M.

Consider any a, b ∈ R and x, y ∈ M. Since ψ(a) ∈ Endz(M) ,

we have,

a(x + y) = (ψ(a))(x + y)

= ψ(a)(x) + ψ(a)(y)

= ax + ay

Similarly,

(a + b)(x) = ψ(a + b)(x)

= [ψ(a) + ψ(b)](x)

= ψ(a)(x) + ψ(b)(x)

= ax + bx

(ab)(x) = ψ(ab)(x)

= (ψ(a) ◦ ψ(b))(x)

= ψ(a)(ψ(b)(x))

= ψ(a)(bx)

= a(bx)

Thus, M is an R-module.

(2) Proof of (2) is similar to (1).

(3) Suppose M is R-unitary and ψ : R → Endz(M) is the corresponding

homomorphism of rings. We have,

ψ(1) : M → M, x → ψ(1)(x) = 1 • x = x.

Hence ψ(1R) =idM

Conversely, suppose ψ(1R) =idM , where, ψ: R → Endz(M) is a homo-

morphism of rings, and the scalar multiplication defined as above.

R × M → M(a, x) → ax = (ψ(a))(x)

We have, 1 • x = (ψ(1)(x) = idM(x) = x, as required.

Note that, for a ring R, the opposite ring R0 is the ring with same

addition as in R and with multiplication reversed. Using the above

theorem, we now establish a relation between R-modules and

11



R0 -modules.

Corollary 2.1.1. M is a left R-module if and only if M is a right R0 -

module, where, R0 is the ring opposite to R

Proof. We have a homomorphism of rings ψ : R → Endz(M). Compose

this with the identity map id : R → R0 , which is an anti-homomorphism,

to get an anti-homomorphism R0 → Endz(M). This means, M is a right

R0 -module.

Conversely, suppose that we have an anti-homomorphism of rings

ψ: R0 → Endz(M).

Compose this with the identity map id : R → R0 which is an anti-

homomorphism, to get a homomorphism mapping R → Endz(M).

Therefore, M is a left R-module.

Remarks 2.1.1. 1. If R is commutative, any left R-module is also a

right R-module. i.e., the notions of left and right modules coincide.

2. If one knows all about all left modules over all possible rings,

then one also knows all about all right modules over all rings. In other

words,the study of all left modules over all rings is equivalent to the

study of all right modules over all rings. This does not mean that the

study of all left modules over a particular ring R is equivalent to the

study of all right modules over R.

Here on wards, we consider only left R-modules for the theoretical

discussion.By an R-module,we mean a left R-module unless or other-

wise specified,

Now we see examples of Modules.

Examples of modules

1.Unitary modules over Z are simply abelian groups.

For, suppose, M is an abelian group. We have the natural map

η : Z × M → M, (n,x)→nx

12



=


0, n = 0

x+ x+ . . . .+ x, ntimesifn > 0

−x− x− . . . − x, ntimesifn < 0

(2.1)

Then,

n(x + y) = (x + y) + (x + y) + ...+ (x + y)/ ( n - times)

= (x + x + ... + x) — n - times + (y + y + ... + y) —

n - times

= nx + ny

Similarly, (n + m)x = nx + mx and (nm)x = n(mx).

This makes M into a unitary Z-module.

Conversely, given a unitary Z-module M, given by

Z×M → M, (n, x) → n.x, we show that n.x = nx for all n ∈ Z.

For n ≥ 0, we have,

n.x = (1 + 1 + ... + 1) | n - times .x

= (1.x + 1.x + ... + 1.x) | n - times

= x + x + ... + x) | n - times

= nx

If n ≤ 0, n . x = (-| n|) . x = |n| (-x) = nx. Thus, n . x = nx for all

n ∈ Z and x ∈ M.

Definition 2.1.4. Let R be any ring and, M, N are (left) R-modules,

then the cartesian product of M × N can be made into an R-module,

called the direct product of M and N in a natural way.

R × (M × N)→ M× N; (a,(x, y))→ (ax, ay)

This can be generalised to an arbitrary family of modules. If {Mα}

is a family of R-modules, then M = Π α ∈ I Mα is an R-module in a

natural way: R × M → M (a,(xα)α ∈ I ) → (axα)α∈I

13



Special cases :

R2 = R × R

Rn = R × R × ... × R | ntimes

R∞ = Πi=1∞ R

R1 =Πα∈I Rα, for all α ∈I

14



Chapter 3

Submodule and classification of

Modules

3.1 Submodules

Definition 3.1.1. Let M be an R-module. A non empty subset N of M

is called an R-submodule, or simply a submodule of M if,

(1) x, y ∈ N ⇒ x y ∈ N (i.e., (N, +) is a subgroup of (M, +))

(2) x ∈ N, a ∈ R ⇒ ax ∈ N. (i.e., N is closed under scalar multipli

cation).

In other words, the restriction of N to addition and scalar multiplica-

tion in M makes N into an R-module in its own right.

Theorem 3.1.2. Let M be a unitary R-module. Then a non-empty

subset N of M is a submodule of M iff for all a, b ∈ R and x, y ∈ N,then

ax + by ∈ N

Proof. Let N be a submodule of the unitary R-module M. Then for

a, b ∈ R and x, y ∈ N, ax ∈ N and (-bx) ∈ N and hence

ax + by = ax - (-(bx)) ∈ N.

Conversely, let N be a non empty subset of M such that for all

a, b ∈ R and x, y ∈ N, ax + by ∈ N.

1R and -1R ∈ R = 1Rx + (1R)y ∈ N ⇒x y ∈ N ⇒ (N, +) is a subgroup

of (M, +).

Again 0R ∈ R ⇒ ax+0Ry = ax ∈ N ⇒ N is stable under external law of
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composition. Consequently, N is a submodule of M.

Corollary 3.1.3. Let M be a unitary R-module. Then a non empty

subset N of M is a submodule of M iff

(1) x, y ∈ N ⇒ x + y ∈ N and

(2) a ∈ R, x ∈ N ⇒ ax ∈ N.

Example 3.1.4. (1) If (G, +) is an abelian group, then G is a Z-module.

The submodules of the Z-module G are precisely the subgroups of G.

In particular, E = {0, ±2, ±4, ...} is a submodule of the Z-module Z.

(2) Submodules of a ring are precisely its ideals.

3) Every ring R may be considered as a left R-module. Let I be a

submodule of R. Then I ⊆ R is such that x - y ∈ I and rx ∈ I,

∀ x, y ∈ I and ∀r ∈ R. Consequently, I is a left ideal of R.

Conversely, let I be a left ideal of R.Then I ⊆ R is such that x - y ∈I

and rx ∈ I, ∀x, y ∈ I and ∀r ∈ R. Hence I is a submodule of the left

R-module R. Thus the submodules of the left R-module R are just the

left ideals of R. Thus the submodules of R are precisely the left ideals

of R.

Likewise, considering R as a right R-module, the submodules of R are

precisely the right ideals of R. In particular, if the ring R is commuta-

tive, then the submodules of R are precisely the ideals of R.

Theorem 3.1.5. Let M be an R-module and {Mi}i∈I be a family of

submodules of M. Then the intersection T, i∈I Mi is again a submodule

of M.

Proof. Let A = T i∈I Mi . 0M ∈ Mi for each i ∈ I, since each submodule

Mi is a subgroup of M ⇒ 0M ∈ A ⇒ A ̸= ϕ. Again, x-y ∈ Mi and rx ∈ Mi

for each i ∈ I and ∀x, y ∈ Mi , ∀r ∈ R ⇒x - y, rx ∈A ⇒A is a submodule

of M.

Remarks 3.1.6. The union of two modules of an R-module M need

not in general be submodule of M, because, union of two subgroups
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of a group need not in general be a group. We now cite the following

examples.

Example 3.1.7. (1) Let M1 = {0, ±2, ±4, ±6, ...} and M2 = {0, ±3,

±6, ±9, ...}. Then M1 and M2 are both submodules of the Z-module

Z. Now 3 ∈ M1 ∪ M2 and 2 ∈ M1 ∪ M2. But, 3 + 2 = 5 ∈/ M1 ∪ M2.

Hence, M1 ∪ M2 cannot be a submodule of the Z-module Z.

(2) Let M1 = {(x, 0) ∈ R2} and M2 = {(0, y) ∈ R2}. Then,

(1, 0) ∈ M1 and (0, 1) ∈ M2, but, (1, 0)+(0, 1) = (1, 1) ∈/ M1 ∪ M2 ⇒

M1 ∪ M2 is not a subgroup of R2 ⇒ M1 ∪ M2 cannot be a submodule of

Z-module R2 .

Let M be an R-module. If M1 and M2 are submodules of M, then

M1 ∩ M2 is the largest submodule of M contained in both M1 and M2.

Because, M1 ∩ M2 is a submodule of M, and M1 ∩ M2 is the largest

subset of M containing both M1 and M2.

Definition 3.1.8. Let M be an R-module and S be a subset of M. Then

the submodule generated or spanned by S, denoted by < Si > is de-

fined to be the smallest submodule of M containing S, i.e., < Si > is a

submodule of M obtained by the intersection of all submodules Mi of

M containing S. To determine the elements of < S >, we introduce the

concept of linear combinations of elements of S.

Definition 3.1.9. Let M be an R-module and S ̸= ϕ be a subset of

M. Then an element x ∈ M is said to be a linear combination of ele-

ments of S, iff ∃x1, x2, ..., xn ∈ S

and r1, r2, ..., rn ∈ R such that x = Σn
1rixi

We denote the set of all linear combinations of elements of S by C(S)

Definition 3.1.10. Let M be an R-module. A subset S of M is said

to be linearly dependent over R if and only if, there exists distinct ele-

ments x1, x2, x3, ..., xn ∈ S and elements r1, r2, r3, ..., rn (not all zeroes) in R

such that r1x1 + r2x2 + ...+ rnxn = 0M . Otherwise, S is said to be linearly
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independent over R.

Remarks 3.1.11. (1) 0M and any subset S (of M) containing 0M are

linearly dependent over R.

(2) If S is linearly dependent over R and T is any subset of M such

that S ⊆ T, then T is also linearly dependent over R. i.e., any subset

containing a linearly dependent set is also linearly dependent.

(3) If S is linearly independent over R and T is any subset of M such

that T ⊆ S, then T is also linearly independent over R. i.e., any subset

contained in a linearly independent set is also linearly independent.

Definition 3.1.12. Let M be an R-module. A submodule N ( ̸= M)

of M is said to be maximal iff for a submodule P of M such that

N ⊆ P ⊆ M, then P = N or P = M. i.e., there is no submodule P of M

satisfiying N ⊆ P ⊆ M.

Definition 3.1.13. A submodule N ( ̸= {0M }) is said to be minimal

iff for a submodule P of M such that P ⊆ N, then P = {0M } or

P = N. i.e., the only submodules of M contained in N are ( ̸={0M }) and

N.

Definition 3.1.14. A module M ( ̸={0M}) is said to be simple iff the

only submodules of M are {0M } and M.

Theorem 3.1.15. Let M be a unitary R-module. Then M is simple

iff for every non zero x ∈ M, M = Rx = {rx | r ∈ R}. i.e.,iff M is

generated by {x} for every x ̸= M in M.

Proof. Let M be a simple unitary R-module. Then for x ̸= 0M in M,

x = 1Rx ∈ Rx ⇒ Rx ̸= ϕ. Next, let rx, tx ∈ Rx, where r, t ∈ R.

Then (rx + tx) = (r + t)x ∈ Rx and r(tx) ∈ Rx. Consequently, Rx is

a submodule of M. Since for x ̸= 0M , x = 1Rx ∈ Rx, Rx ̸= 0M . Again,M

being a simple R-module, Rx = M.

Conversely, let Rx = M for every non-zero x ∈ M. Suppose A ̸= 0M is
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a submodule of M. Then, ∃ a non-zero element x in A such that

Rx ⊆ A. i.e., M ⊆ A. Since A ⊆ M, it follows that A = M. Consequently,

M is a simple R-module.

Definition 3.1.16. Suppose M is an R-module and P, Q are R-submodules

pf M. Then the sum of the submodules P, Q is defined as:

P + Q = x + y | x ∈ P and y ∈ Q This is an R-submodule of M con-

taining P and Q. This concept can be generalised for any family

{Pα}α ∈ I of submodules of M: Σ(α ∈ I) Pα = { (α ∈I) xα | xα ∈ Pα,

xα = 0 except for finitely many α’s} This is a submodule of M contain-

ing each Pα, α ∈ I.

Definition 3.1.17. Suppose M and N are R-modules. Consider the

cartesian product P = M × N, which is again an R-module. We ob-

serve that P contains M and N as submodules, namely

M = {(x, 0) ∈ P | x ∈ M} ⊆ P and N = {(0, y) ∈ P | y ∈ N} ⊆ P.

The sum of the submodules M and N in P is called the direct sum of

the modules M and N. This is denoted by M ⊕ N. We have,

M ⊕ N = {(x, 0) + (0, y) | x ∈ M and y ∈ N}

= {(x, y) ∈ P | x ∈ M and y ∈ N}

This sum is direct in the following sense :

Every element of M ⊕ N can be uniquely written as the sum of an

element in M and an element in N, or, equivalently, P = M + N, with

M ∩ N = (0)

Proposition 3.1.18. Suppose M and N are submodules of a module

P over R. Then M ∩ N = (0) if and only if every element z ∈ M + N

can be written uniquely as z = x + y with x ∈ M and y ∈ N.

Proof. Suppose M ∩ N = (0). Let z = x + y = x’ + y’ ; x, x0 ∈ M and

y, y’ ∈ N. Then, x - x’ = y - y’ ∈ M ∩ N = (0), which implies x = x’

and y = y’ , showing the uniqueness.

Conversely, suppose that every element of M + N has a unique decom-

position. Let z ∈ M ∩ N. Now, 0 = z + (-z) = 0 = 0 + 0 ∈ M + N, z ∈ M,
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-z ∈ N. By uniqueness of decomposition, we get z = 0. i.e., M ∩ N = (0)

Definition 3.1.19. A module P over R is called a direct sum of a family

of submodules {Pα}α ∈I if P = Σα∈I Pα and every element z ∈ P can

be written uniquely as z = Σα ∈I xα , xα ∈ Pα, xα = 0 except for

finitely many α’s. We write P = ⊕ α∈ I Pα

3.2 Classification of Modules

In this chapter, we shall discuss some significant types of modules over

various rings, and give a brief description of their properties.

3.2.1 Simple Modules

Definition 3.2.1.1 A module M is called a simple module if

1. M ̸= (0), and

2. the only submodules of M are (0) and M

In this section, we discuss about a simple module. A simple module

is a module with no non-trivial submodules. We start by defining Max-

imal and Minimal submodules, explain how they are related to simple

modules, and further, examine some properties of simple modules.

Definition 3.2.1.2 A submodule N of a module M is called a maximal

submodule if

1. N̸= M, and,

2. N ⊆ P ⊆ N, P is a submodule of M ⇒ P = N or P = M, i.e., the

only submodules of M containing N are N and M.

Definition 3.2.1.3. A submodule N of a module M is called a mini-

mal submodule if

1. N ̸= (0), and

2. P ⊆ N, P is a submodule of M ⇒ P = N or P = (0), i.e., the only
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submodules of N contained in N are (0) and N.

Lemma 3.2.1.4. (Schur’s Lemma) : Let N and M be simple R-modules.

Then, any R-linear map f : M → N is either 0 or an isomorphism. In

particular, D = EndR(M) is a division ring.

Proof. Suppose f : M → N is R-linear and f ̸= 0, i.e., f(x) ̸= 0 for

some x0 ∈ M. We have Ker(f) is a submodule of M. Therefore Ker(f) is

either (0) or M since M is simple. Since f ̸= 0, Ker(f) ̸= M, and hence,

Ker(f) = 0, i.e., f is one-one. On the other hand, the image f(M) is a

submodule of N. Therefore f(M) = 0 or N (since N is simple),

i.e., f ∼= 0 or f is onto. But f not congruent to 0, and so f is an isomor-

phism.

To see the last assertion, let f : M → M be R-linear. Since M is simple,

f is either zero or an isomorphism which means that D = EndR(M) is a

division ring.

Proposition 3.2.1.5. Let R be any ring. Then an R-module M is simple

if an only if M ≈ R/I for some maximal left ideal in R.

Proof. Suppose M ≈ R/I for some maximal left ideal I in R. Then we

know that R/I ̸= (0) and R-submodules of R/I are (0) and R/I. Hence

R/I is simple, i.e., M is simple.

Conversely, suppose M is a simple R-module. We know that M̸= (0).

Take any x0 ∈ M, x0 ̸= 0. Then the submodule (x0) generated by x0 is

non-zero and hence is equal to M, i.e., M is a cyclic R-module. Now

look at the map f : R → M given by a → ax0.

This is R-linear and surjective. Hence by Epimorphism theorem, we

get R/Ker(f) is isomorphic to M, i.e., Ker(f) is maximal left ideal, as

required. In the backdrop of the above proposition, the annihilator of

any element of a simple module have some interesting properties. We

now discuss these properties in detail.

Corollary 3.2.1.6 The annihilator of any non-zero element of a sim-
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ple module is a maximal left ideal and vice-verse.

Proof. If M is simple, x0 ∈ M, x0 ̸= 0, and f : R → M, a → a x0, then

Ker(f) = {a ∈ R — a x0 = 0} is the annihilator of x0 which is a maximal

left ideal. Conversely, if m is a maximal left ideal of R, then m is the

annihilator of the non-zero element x0 = 1 + m of the simple module

R/m, as required.

Note:Every simple module is cyclic.And converse need not be true.

Examples

1. Any one dimensional vector space is simple.

2. Any minimal submodule of a module is simple.

3.2.2 Free Modules

Definition 3.2.2.1. An R module M is called free module if M has a

basis(A subset x subset M is basis if it is spanned by x and linearly

independent and satisfy linear combinations).

Examples

1. Rn = Rn = R × R × ... × R | ntimes is a free R-module if R has 1.

The set B = {(1, 0, ..., 0),(0, 1, ..., 0), ...,(0, 0, ..., 1)} is an R-basis for

Rn , called the standard basis ofRn.

Example of a non-free module

Any finite abelian group is not free as a module over Z. In fact, any

abelian group M, which has a non-trivial element of finite order cannot

be free as a module over Z. For, suppose M is free. Say B is a basis for

M over Z. Let 0 ̸= x ∈ M be such that nx = 0 for some n ∈ N,

mx ̸= 0 for m<n and n≥ 2. Now we have x = n1b1 + n2b2 + ... + nrbr for

some b1, b2, ..., br ∈ B and n1, n2, ..., nr ∈ Z

Hence, 0 = nx = n[n1b1 + n2b2 + ... + nrbr] = nn1b1 + nn2b2 + ... + nnrbr⇒

nn1 = 0

nn2 = 0, ..., nnr= 0 (by linear independence of B ⇒ n1 = 0, n2 = 0, ..., nr =

0(since n ̸= 0), i.e., x = 0, a contradiction.
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Theorem3.2.2.2. A vector space is a free module. i.e., it has a ba-

sis.

Proof. Let V be a non-zero vector space over a division ring D. Let F

be a family of all independent subsets of V . i.e., F = {A ⊆ V ; A is

linearly independent over D}

Observe that F ̸= ϕ because F contains all non-zero elements of V .

Partially order F under the set inclusion and apply Zorn’s lemma to

get a maximal element B in F.

Claim : B is a basis for V . We only have to show that B spans V . If

not, there exists v ∈V such that v is not a subset of any finite combi-

nation of subsets of B. Now, B ∪ {v} is linearly independent, for

αv + α1b1 + ...+αrbr = 0⇒ α ̸= 0 ⇒ = -α -1 [α1b1 + ...+αrbr] =

−α -1α1b1+ ...+−α -1ααrbr ⇒ v ∈ span B which is a contradiction to our

assumption.

Hence B ∪ {v} is linearly independent. This contradicts the maximality

of B. Hence B spans V over D

Notes:

1)Zero Module is free with empty sets as basis.

2)z6 is a free z6 module,but not 2z6.

3) Q is torsion free as z-module,since Q is a field that contains Z as a

submodules.

E.g: For torsion free module,ideal (x,y) of polynomial ring k(x,y)

over field k, Q is a torsion free.

3.2.3 Quotient Modules

In this section, for an R-module M, and its submodule N, we discuss

the structure of the quotient group M/N and discuss some properties

of quotient group of modules.

Definition 3.2.3.1. Given an R-module M, and its submodule N, the

quotient group M/N has a natural structure of an R-module as follows:
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R × (M/N) → M/N; (a, x + N) → ax + N, ∀ a ∈ R, and x ∈ M

This scalar multiplication is well defined because, if x + N = y + N,

for x, y ∈ M,

we have, x - y ∈ N and hence ax - ay = a(x - y) ∈ N,

i.e., ax + N = ay + N, as required. It is a simple matter to check that

M/N is an R-module, called the quotient of M modulo N.

Proposition 3.2.3.2. Suppose N is a submodule of an R-module M.

Then the set of submodules of M/N is naturally bijective with set of

all submodules of M containing N.

Proof. Let P be a submodule of M/N. Consider the set

P0 = {x ∈ M ; x + N ∈ P}. Since x + N = N ∈ P, ∀ x ∈ N, we have,

N ⊆ P0.

Claim : P0 is a submodule of M.

Let u, v ∈ P0. Since P is a submodule, we have

(u + N) - (v + N) = (u - v) + N ∈ P implies u - v ∈ P0.

Now, let x ∈ P0., i.e., x + N ∈ P. Let a ∈ R. Since P is a submodule

of M/N, we have a(x+N) = ax+N ∈ P implies ax ∈ P0.. Hence P0 is a

submodule of M. It is easy to see that P ⊆P’, in M/N ⇔ P0. ⊆ P0’ in M.

Hence, P ̸=P0. in M/N ⇔ P0. ̸=P0’ in M Finally, if K is a submodule

in M containing N, then K˜ = {x +N ; x ∈ K} is a submodule in M/N

and furthermore, we have, K̃0 = {x ∈ M ; x + N ∈ ˜(K)}

= {x ∈ M ; x ∈ K} = K

This proves the proposition.

Notes: Any quotient R/M is a simple module.

3.2.4 Modules over PID’s

In this section, we shall establish some elementary and standard facts

about modules over Principal Ideal Domains (PID’s). These are natural

generalisations of well-known properties of abelian groups. But abelian

groups are modules over Z which is a PID.

Definition 3.2.4.1. A module is said to be a torsion module if every
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element is a torsion element, i.e., annihilated by some non-zero scalar.

Definition 3.2.4.2. A module having no non-zero torsion elements is

called a torsion free module. (This is equivalent to saying that every

non-zero element is linearly independent).

Definition 3.2.4.3. The set of all torsion elements of a module M (over

a commutative ring) form a submodule, called the torsion part of the

module M, denoted by Mt . (It is the largest torsion submodule of M

and saying that M is torsion free is same as saying that its torsion part

Mt is (0)

Example of a torsion free module which is not free Let R = Z and

M = (Q, +) which is obviously torsion free, i.e., it has no elements of

finite additive order other than 0. But (Q, +) is not free because any

two elements of (Q, +) are linearly dependent over Z and (Q, +) is not

cyclic itself.

Remarks 3.2.4.4

1.Torsion modules are nothing but modules of rank 0.

2.Finitely generated torsion modules over Z are nothing but finite

abelian groups.

3.2.5 Cyclic Modules

Definition 3.2.5.1. Let M be a right R-module. A submodule V of M

(possibly V = M) is cyclic if there exists an element x ∈ M such that

V = xR, i.e., V is generated by one element, so that

V = xR = {xr ; r ∈ R}. Any y ∈ V such that V = yR is a cyclic vector.

Some of the examples for cyclic modules are given below .

Examples 1. Let R = Z and let M be any R-module (a Z-module
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is just an abelian group). If a ∈ M, then aZ is the cyclic subgroup of M

generated by a, denoted by (a). So, M is generated as a Z-module by a

set A which is an abelian group.

3.2.6 Finitely Generated Modules

Definition 3.4.6.1. A submodule N of M is said to be finitely generated

if it is generated by some finite subset x of M.

Eg: R module N=r[x] is not finitely generated.

Theorem 3.4.6.2. A finitely generated torsion free module over a PID

is free.

Proof. Let M be torsion free, non-zero, and generated by X = {x1, ..., xn}.

By reordering if necessary, we may assume that B = {x1, ..., xm} is a

maximal linearly independent subset of X. Let F = Span B. Since M is

non-zero and torsion free, we have M ≥ 1. For each i, there are scalars

ai , aij , not all zero such that

aixi+ Σj=
m
1 aijxj = 0

Since B is linearly independent, it is clear that ai ̸=0, ∀ i. Let

a = a1a2...an so that a̸= 0. For, aixi ∈ F and so axi ∈ F, ∀i,

i.e., aM ⊆ F. Now the map f : M → F; x → ax, is R-linear and a

monomorphism since M is torsion free. Hence M ≈ f(M) which is a

submodule of the free module F and so f(M) is free , i.e., M is free, as

required.
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Chapter 4

Module Homomorphism

In this section, we study homomorphisms of rings which are similar to

that we see in groups. The purpose, concepts, terminologies are similar

to that of groups.

Definition 4.1. For given R-modules M and N, by an R-module homo-

morphism f : M → N, we mean a map that is additive and commutes

with scalar multiplication.

i.e., f(x + y) = f(x) + f(y), and f(ax) = af(x) for all x, y ∈ M and

a ∈ R.

Definition 4.2. Given a homomorphism f : M → N of R-modules M

and N, the kernal of f is defined as {x ∈ M | f(x) = 0, denoted by Kerf.

It is a submodule of M.

Definition 4.3. A homomorphism f : M → N of R-modules M and

N is called

1. a monomorphism if f is one-one

2. an epimorphism if f is onto

3. an isomorphism if f is one-one and onto

4. an endomorphism if M = N

5. an automorphism if M=N and f is an isomorphism.
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Definition 4.4. Let f, g : M → N be R-linear homomorphisms. Then,

define

f + g : M → N, by x → f(x) + g(x)

Note that f + g is linear, because,

(f + g)(x + y) = f(x + y) + g(x + y)

= f(x) + f(y) + g(x) + g(y)

= (f + g)(x) + (f + g)(y),

and (f + g)(ax) = f(ax) + g(ax)

= af(x) + ag(x)

= a(f + g)(x).

Under this addition, HomR(M, N) is an abelian group with 0 map as

the identity element and f defined by (f)(x) = (f(x)) which is linear, as

the inverse of f.

Theorem 4.5. (Epimorphism Theorem): Suppose f : M → N is an

epimorphism of R-modules with P = Ker f. Then there exists a unique

ismomorphism ˜f : M/P → N such that f = f̃ ◦ η, where η is the natural

map given by η : M → M/P, x → x +P.

i.e., is commutative.

Proof. Let ˜f : M/P → N be defined as ˜f(x+P) = f(x) for all x ∈ M.

Claim 1 : ˜f is well defined. Suppose x+P = y+P, for some x, y ∈ M.

This means that x-y ∈ P, i.e, x-y ∈ Kerf. Thus f(x-y) = 0 implies

f(x) = f(y) (f being a homomorphism). i.e., ˜f(x + P) = ˜f(y + P).

Hence the map ˜f is well defined.

Claim 2 : ˜f is injective.

Suppose that ˜ f + P = ˜f(y + P). Then we have to show that

x + P = y + P. But we have f(x) = f(y). i.e., f(x) - f(y) = 0. Since f

is a homomorphism, we get that f(x - y) = 0. Thus, x - y ∈ Kerf = P.

Hence, x + P = y + P as required.

Claim 3 : ˜f is a homomorphism. For all x, y ∈ M, we have

˜f((x + P) + (y + P)) = ˜f(x + y + P)

= f(x + y)

= f(x) + f(y)
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= ˜f(x + P) + ˜f(y + P)

and, ˜f((x + P) • (y + P)) = ˜f(xy + P)

= f(xy)

= f(x).f(y)

= ˜f(x + P) .˜f(y + P)

Therefore, ˜f is an isomorphism and hence a monomorphism.

Claim 4 : ˜f is an isomorphism if and only if f is an epimorphism. We

have, f = ˜f ◦ η. If ˜f is an isomorphism, then ˜f is an epimorphism.

The natural map η is also an epimorphism. Then by claim 3 above, f

is an epimorphism. Similarly, f is an epimorphism implies that ˜f is an

epimorphism, hence an isomorphism as required.

Theorem 4.6. (Quotient of a quotient): Suppose P ⊆ N ⊆ M are R-

submodules of an R-module M. Then, there exists a natural isomor-

phism ˜η : (M/P)/(N/P) → M/N, making commutative

Proof. Define ˜η : (M/P)/(N/P) → M/N by ˜η(a+P +N/P) = a+N.

Claim 1 : ˜η is well defined.

Let a, b ∈ R and a + P + N/P = b + P + N/P. Then,

(a + P) - (b + P) ∈ N/P ⇒ (a - b) + P ∈ N/P

⇒ a - b ∈ N

⇒ a + N = b + N

Then by definition, ˜η(a + P + N/P) = ˜η(b + P + N/P). Hence, η

is well defined.

Claim 2 : ˜η is a homomorphism of rings.

Let a, b ∈ M. Then,

˜η((a + P + N/P) = (b + P + N/P))

= ˜η(a + b + P + N/P)

= a + b + N

= (a + N) + (b + N)

= ˜η(a + P + N/P) + ˜η(b + P + N/P)

and, η˜(a + P + N/P)(b + P + N/P) = ˜η(ab + P + N/P)

29



= ab + N

= (a + N).(b + N)

= ˜η(a + P + N/P).˜η(b + P + N/P)

Thus, ˜η is a homomorphism.

Claim 3 : ˜η is surjective.

Let x ∈ M/N, say x = a + N for some a ∈ M. Now, consider ˜η(a + P

+ N/P). We have, ˜η(a + P + N/P) = a + N = x. Therefore, ˜η is

surjective.

Claim 4 : ˜η is injective.

By definition, we have,

Kerf = {a + P + N/P ∈ (M/P)/(N/P) ; η˜(a + P + N/P) = 0}

= {a = P + N/P ∈ (M/P)/(N/P) ; a + N = N}

= {a + P + N/P ∈ (M/P)/(N/P) ; a ∈ N}

= N/P = 0in(M/P)/(N/P)

Therefore, ˜η is injective.

Thus ˜η is an isomorphism.
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Chapter 5

Modules with Chained Conditions

In this chapter, we study some important classes of modules. Modules

discussed here are Artinian and Noetherian modules.

5.1 Artinian Modules

Definition 5.1.1. A module M is called Artinian if descending chain

condition (d.c.c) (or equivalently, the minimum condition) holds for M.

Remarks 5.1.2. Minimal submodules exist in a non-zero Artinian mod-

ule because a minimal submodule is simply a minimal element in the

family of all non-zero submodules of M.

Examples:

1. A module which has only finitely many submodules is Artinian. In

particular, finite abelian groups are Artinian as modules over Z.

2. Finite dimensional vector spaces are Artinian (for reasons of dimen-

sion), whereas infinite dimensional ones are not Artinian.

Theorem 5.1.3. Submodules and quotient modules of Artinian mod-

ules are Artinian.

Proof. Let M be Artinian and N be a submodule of M. Any family of

submodules of N is also one in M and hence the result follows. On the

other hand, any descending chain of submodules of M/N corresponds

to one in M (wherein each member contains N) and hence the result.
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5.2 Noetherian Modules

Definition 5.2.1. A module M is called Noetherian if a.c.c, (or equiv-

alently the maximum condition or the finiteness condition) holds for M.

Remarks 5.2.2. Maximal submodules exist in a non-zero Noetherian

module because a maximal submodule is simply a maximal element in

the family of all non-zero submodules N of M, N̸=M.

Examples

1. A module which has only finitely many submodules is Noetherian.

In particular, finite abelian groups are Noetherian as modules over Z.

2. Finite dimensional vector spaces are Noetherian (for dimension rea-

sons) whereas infinite dimensional ones are not Noetherian.

Theorem 5.2.3. Submodules and quotient modules of Noetherian mod-

ules are Noetherian.

Proof. Let M be Noetherian and N a submodule of M. Any family of

submodules of N is also one in M and hence the result follows. On the

other hand, any ascending chain of submodules of M/N corresponds to

one in M (wherein each member contains N) and hence the result.
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Chapter 6

Applications and Contributions

6.1 Applications

There are some applications of modules we see in our day to day

life, in each sectors like mathematics, chemistry,physics, computer sci-

ence,botony, games etc

1)Every vector space is a module and having no trouble in finding ap-

plications of vector spaces in a wide variety of fields.

Note:The constant value pi is not a module;since it is not even a vec-

torspace. If pi was a vector space then we can say that pi was a mod-

ule;since every vector spaces is a module.

2)The study of set of solutions of system of linear differential equation

with constant coefficients is facilitated by realization that they form an

R[D]-module

Eg: consider the system of differential equations

x′ = −x+ 6y

y′ = x− 2y

thus,

x′′ + 3x′ − 4x = 0

x′′ = −x′ + 6y′
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= 3x′ − 4x

The resulting differential equation with characteristic equation

r2 + 3r − 4 = 0

3)Error detecting codes: decoding algorithms of certain codes use grob-

nes basis of modules over the ring of polynomials

4)Telecommunications engineering: signal constellation design is facili-

tated by use of modules over an algebraic number field.

5)Modern cryptography: construction of NTRO cryptosystem similarly

uses a structure that IIRC is best viewed as a module over ring of mod-

ular polynomials.

6)Theoretical physics:representation theory for groups uses module the-

ory.

6.2 Contributions in Module Theory

• First course in module theory A by Mike E Keating:It deals with an

intro to module theory about linear algebra and ring theory.

• Rings ,Modules and total by Friedrich kasch and Adolf mader:Ring

defined as set R with two associative operation Addition and Multipli-

cation distinguish between concept and current module.

• On trace for Modules- Howard Bheckwick: Trace is taken to be R-

module homomorphism and basic trace property’

• Kostia Beidar’s contributions to module Ring theory by Christian

Lamp,Robert Wisbaner 2007: Dealing with works on rings with poly-

nomial identities and condition for rings, and extended Modules later

over rings over prime PI-rings.

• Group Action on Fuzzy Modules:Mohammed Yamin Poonam Kumar

sharma, Introducing the Fuzzy g-Modules by defining group action of

G on a fuzzy G-submodules and so on.

• Fuzzy projective-injective Modules:Mohammed Mehdi Zahedi Rezo

Ameri, Equalent condition for object in category for fuzzy R- Modules

to be injective or projective.
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• Fuzzy lattice ordered soft groups:concept of lattice ordered fuzzy soft

group is explained.

• Module theory, extending Modules and generalization:Generalisation

of CS modules Rings

• Galosis module structure of Lubin Tate Model:Extension of Galois

extension over the fields.

• Rough G-Modules and their properties:rough theory concept being

explained with abstact algebra rough structures.

• Fuzzy lattice oredereed G-Modules :Ursala Paul Paul Issac, How

study of mathematics reflect in real life. Also fuzzy sand rough set

theories used to make decision .
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CONCLUSION

A study on Module gives the idea of modules as an important alge-

braic structures. As part of this I explore various aspects of mathemat-

ical world and also importance of modules in algebra and preparation

on module theory was a great learning experience.
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