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Chapter 1

Literature Review

1.1 Introduction

Graph Colouring is a relatively new area of Mathematics. It is also a field in which

much advancements are taking place. Graph Colouring is one of the sub-branch

of Graph theory. Graph theory can be considered as a branch of Mathematics

that depends very little on other branches of Mathematics and is independent in

itself [1]. Graph theory is having a lot of applications. These are extended to

other branches like Chemistry, Computer Science, etc. It has real life applications

in many other fields too.

Origin of graph theory can be traced back to Leonhard Euler’s paper on

Königsberg bridge problem and it is considered as the first paper in the history

of Graph theory. It was published in 1736 and Leonhard Euler is known as the

father of graph theory. The problem is about two islands C and D formed by

Pregel river in Königsberg. They were connected with each other and the banks

A and B by means of seven bridges. The problem is to start from any of the four

areas A, B, C and D and return back to the starting point by travelling through

the seven bridges exactly once. Euler presented this problem by means of a graph

such that land masses are represented by vertices and edges represents the bridges

connecting them. This marked the beginning of graph theory. After that a lot of

advancements have taken place and still now it is an active area of research.

Graph colouring is one of the sub-field of graph theory in which a lot of re-

searches are going on. It is the assignment of colours to elements of a graph under

some constraints. Graph theory started as the colouring of maps such that coun-
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1.2. HISTORY Applications of Vertex Colouring

tries sharing the same boundary receives different colours by a question raised by

Francis Guthrie. He postulated this as the four colour conjecture which states

that it is possible to colour the map with no more than four colours. A lot of dis-

cussions had take place. And famous scientists like Augustus De Morgan, William

Hamilton studied this problem. In this way a simple question leads to the birth of

graph colouring. Kenneth Appel and Wolfgang Haken finally proved Four colour

theorem in 1976 with the help of computer assistance. Their proof on Four colour

theorem was the first major proof done with computer assistance. Meanwhile

many other concepts like chromatic polynomials got its growth. In this way graph

colouring had been always and still an active field of research.

Through this project we try to discuss about various applications of vertex

colouring and to show how they are being related to our lives.

1.2 History

Graph colouring got its beginning by an interesting question put forwarded by

Francis Guthrie. He while trying to colour the map of England noticed that four

colours are sufficient to colour the map in such a way that no two regions with

a common border is coloured with the same colour. Francis Guthrie’s brother

Frederick Guthrie passed this question to his professor Augustus De Morgan and

he enquire about this observation in a letter to Hamilton on 23rd October 1852.

De Morgan had continued his discussions about the Four Colour Conjecture to

many of his friends. And it had remained as an unsolved problem for a long time.

On 17 June 1879 Cayley brought out this problem before the London Mathe-

matical Association during a meeting. In the same year he sends a paper ‘On the

colouring of maps’ to Royal Geographical Society [6]. It discusses about what all

are the difficulties that are prevailing to solve this problem. Later it was published

on 1879. But in the same year Alfred Bray Kempe one of Cayley’s student an-

nounced that he has proof and on Cayley’s advice Kempe published his work on

American Journal of Mathematics in 1879 itself. His proof also contained Kempe

chain argument, one of his famous work. For a long time Kempe’s proof remain

true.

But in 1890 Percy John Heawood points out the errors in Kempe’s proof in

his paper ‘Map Colouring Theorem’. It was published in the Quarterly Journal
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1.3. PRELIMINARIES Applications of Vertex Colouring

of Pure and Applied Mathematics. So again four colour theorem turn out to be

four colour conjecture. But Heawood’s paper give birth to another theorem called

Five Colour theorem and Heawood proved this theorem in the same paper. Five

colour theorem states that every planar graph can be coloured with five colours.

A proof for four colour theorem was finally accepted in 1976. The proof was done

by Kenneth Appel and Wolfgang Haken with the help of J. Koch and it was a

computer based proof. Because of that many mathematicians did not consider it as

a valid one for many years. But their proof becomes much more acceptable when

Neil Robertson, Daniel Sanders, Paul Seymour and Robin Thomas developed a

more systematic proof around 1994.

1.3 Preliminaries

Graph:

A graph is an ordered triplet G = (V (G), E(G), IG) where V(G) is a non empty

set, E(G) is a set disjoint from V(G) and IG is an ‘incidence’map that associates

with each elements of E(G), an unordered pair of elements (same or distinct) of

V(G).

Elements of V(G) are called vertices and the elements of E(G) are called the edges

of G [2].

End Vertices:

A vertex v is incident with an edge e if there is an edge at v. Two vertices are

said to be end vertices if they are incident with the same edge [3].

Self Loop:

An edge with same end vertex as end vertices is called a self-loop.

Adjacent Edges:

Two edges are said to be adjacent edges if they are incident on the same vertex.

Adjacent Vertices:

Two vertices that are the end vertices of the same edge is said to be adjacent

3



1.3. PRELIMINARIES Applications of Vertex Colouring

vertices.

Parallel Edges:

Two or more edges are said to be parallel if they are incident with same pair of

vertices.

Simple Graph:

A graph is simple if it does not have any self-loop or parallel edges.

Degree of a vertex:

Degree of a vertex is defined as the number of edges incident on a vertex.

Maximum degree:

It is the maximum of degrees of the vertices of a graph G. It is denoted by ∆(G) [4].

Minimum degree:

It is the minimum of degrees of the vertices of a graph G. Minimum degree is

denoted by δ(G) [4].

Isolated vertex:

A vertex whose degree is zero is known as an isolated vertex.

Walk:

It is a finite alternating sequence of edges and vertices in such a way that it begins

and end with a vertex and each edge have an end vertices. Vertices can be repeated

in a walk.

If a walk begins and ends at the same vertex then it is called a closed walk. A

walk that is not closed is called open.

Trail:

A walk in which no edge is repeated is called a trail.

4



1.3. PRELIMINARIES Applications of Vertex Colouring

Path:

A trail in which no vertices and no edges are repeated is a path. Since a path is

a trail, it is also an open walk.

Length of a Walk:

Number of edges in a walk is known as its length. Similarly length of a path or

trail is the number of edges in the path or trail respectively.

Cycle:

A closed walk in which no edges and no vertices except the initial and final vertex

appears more than once is known as a cycle.

Circuit:

A closed trail is known as a circuit.

Connected Graph:

A graph in which if every pair of vertices has at least one path between them is

known as connected.

Disconnected Graph:

A graph that is not connected is known as a disconnected graph.

Tree:

A connected graph without any cycle is known as a tree.

Forest:

A graph without cycles is known as a forest. So each component of a forest is a

tree [4].

Complete Graph:

A graph in which every pair of vertices is connected by an edge is called a complete

graph.
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1.3. PRELIMINARIES Applications of Vertex Colouring

Vertex Index:

Usually a vertex has a name associated with it. Internally, within the implemen-

tation of the graph in computer programs, for the computer to recognise it may

be more convenient to refer a vertex using an integer number [5]. This integer

number is known as an Vertex Index.

Planar Graph:

A graph is said to be planar if it can be embedded in a plane or a graph is said to

be planar if it can be drawn in a plane so that no edges cross over each other.

Proper Colouring

Colouring the vertices of a graph such that no two adjacent vertices have the same

colour is called the proper colouring of a graph.

A graph in which every vertex is given a proper colour according to proper

colouring is known as a properly coloured graph. There are a lot of ways in which

a given graph can be properly coloured. But in graph colouring problems it will

be of interest to produce a properly coloured graph which uses minimum number

of colours.

K - Colourable Graph

A graph is k - colourable, if it has a proper k-colouring, i.e. it will use one of

k colours to produce a proper colouring of the graph. Here we are considering a

graph without self - loops.

K – Chromatic Graph

If a graph uses k different colours and no less than k colours to obtain its proper

colouring then such a graph is known as k – chromatic graph or the graph has

chromatic number k [9].

• A graph with only isolated vertices is 1-chromatic.

• Every tree is 2 - colourable.

• A complete graph on n vertices is n chromatic [2].
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1.4. GRAPH COLOURING Applications of Vertex Colouring

Chromatic Number

Chromatic number of a graph G is denoted by χ(G) and it is defined as the min-

imum number of colours needed for obtaining a proper colouring of G. So G is

K-chromatic if χ(G) = k [4].

1.4 Graph Colouring

1.4.1 Graph Colouring

In Graph theory, graph colouring is the assignment of colours to elements of a

graph subject to certain constraints. By elements of a graph it means edges,

vertices, regions, etc. Graph colouring is mainly of three types Vertex colouring,

Edge colouring and Region colouring. Besides these, there are many other types

of graph colouring like List colouring, List-edge colouring, Acyclic colouring, Ori-

ented colouring, etc. The specialty of vertex colouring is that any type of graph

colouring can be converted into a vertex colouring.

1.4.2 Vertex Colouring

By the term graph colouring, in most cases it means vertex colouring. Vertex

colouring is defined as the assignment of colours to the vertices of a graph such

that no two adjacent vertices have the same colour.

1.4.3 Edge Colouring

An edge coloring is the assignment of colours to the edges of a graph such that no

two incident edges share the same colour [1].

1.4.4 Region Colouring

In region colouring or face colouring of a planar graph a colour is assigned to each

region or face so that no two faces that share a boundary share the same colour.

1.4.5 Graph Colouring Problem

Graph colouring problem is the labelling of certain elements of a graph, subject

to certain constraints [7]. The labels are typically called colours. Graph colouring
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1.4. GRAPH COLOURING Applications of Vertex Colouring

problem has found applications in many fields like Sudoku, Geographical maps,

etc. The most common graph colouring problem is Vertex colouring.

Here when a graph G with n vertices is given, our main aim is to find the

minimum number of colours that can be used to paint its vertices such that no

two adjacent vertices have the same colour. This is the colouring problem [8].
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Chapter 2

Chromatic Partitioning

2.1 Independent Set

Let G be a graph. Then a set of vertices of G is said to be independent set if no

two vertices in it are adjacent in G.

2.1.1 Maximal Independent Set

Maximal Independent Set can be defined as an independent set to which no other

vertices can be added without destroying its independence property.

2.1.2 Maximum Independent set

A graph can have a number of maximal independent sets of varying sizes. Among

them an maximal independent set is called maximum independent set if it’s car-

dinality is maximum than the others [2].

2.1.3 Independence Number

It is the number of vertices in a maximum independent set and is denoted by

β(G).

2.2 Chromatic Partitioning

Let G be a simple connected graph. Partitioning the vertices of G into smallest

possible number of disjoint independent set is known as chromatic partitioning. In

other words chromatic partitioning is obtained by finding all maximal independent

sets and selecting the smallest number of sets that contain all the vertices of G.
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2.2.1 Colour classes

If G is a k-chromatic graph then its vertex set V(G) can be partitioned into k

independent sets V1, V2, ...Vk called colour classes and vertices in same colour class

will be assigned same colour [10]. In other words a colour class is a set of vertices

which are having the same colour when a graph is coloured [1].

2.2.2 Upper and Lower bound of Chromatic Number

Theorem:

Let H be a subgraph of a graph G. Then,

χ(H) ≤ χ(G) (2.1)

Proof:

Let H be a subgraph of a graph G. Then any colouring of G produces the colouring

of H too. Since it will possibly uses χ(G) or even fewer colours for H than G to

get a colouring [10],

χ(H) ≤ χ(G)

2.3 Clique

A complete subgraph of G is known as its Clique.

2.3.1 Clique Number

It is the order of the largest clique in a graph G. It is denoted by ω(G).

Theorem:

For every graph G,

χ(G) ≥ ω(G) (2.2)

and

χ(G) ≥ n

β(G)
(2.3)

where n is the order of G.

Proof:

Let H be a clique of G with order ω(G). Then since H is a clique of G, it is a

complete subgraph of G. So chromatic number of H is the number of vertices in

10



2.3. CLIQUE Applications of Vertex Colouring

it, which is ω(G).

i.e.,χ(G) = ω(G).

Also H is a subgraph of G, therefore χ(H) ≤ χ(G).

i.e, χ(H) ≥ ω(G)

Let k = χ(G). Suppose that G is coloured with k colours. Let the vertex set

V(G) be partitioned into k independent sets V1, V2, ...Vk. These are the colour

classes and since they are independent any of them will be of maximum size

β [10] [11]. Then,

n =
k∑

i=1

|Vi| ≤ kβ (2.4)

i.e,

χ(G) ≥ n

β(G)

2.3.2 Critical Graph

A graph G is called critical if χ(H)<χ(G) for every proper subgraph H of G. Also

a graph is called K - critical if it is both K - chromatic and critical.

Theorem:

If G is K - critical then,

δ(G) ≥ k − 1 (2.5)

Proof:

The proof is by contradiction. Suppose δ(G) < k-1. Let V be a vertex of minimum

degree in G, i.e., degree of V is δ in G. G-V is k-1 colourable as G is k - critical.

Then V will have at most k-2 neighbours and they can be coloured using at most

k-2 colours in the k-1 colouring of G-V. So if we colour V with the remaining one

colour of k-1, then a proper k-1 colouring is obtained for G. This is a contradiction

as G is k - critical. Hence the assumption is wrong. So, δ(G) ≥ k-1 [12].

Theorem:

For any graph G,

χ(G) ≤ 1 + δ(G) (2.6)

Proof:

Let G be a k chromatic graph. So δ(G) = k. Let H be a subgraph of G, which is

k - critical. i.e., χ(G) = k. Also by above theorem since H is k - critical δ(H) =

11



2.4. BROOK’S THEOREM Applications of Vertex Colouring

k-1. Then,

k ≤ 1 + δ(H)

≤ 1 + ∆(H)

≤ 1 + ∆(G)

i.e., k ≤ 1+ ∆(G) where k is χ(G). Hence the proof [4].

2.4 Brook’s Theorem

Let G be a connected simple graph which is neither an odd cycle nor a complete

graph then,

χ(G) ≤ ∆(G) (2.7)

Note:

So Brook’s theorem tells that if G is connected then,

χ(G) = 1 + ∆(G) (2.8)

iff either G is an odd cycle or a complete graph [13].
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Chapter 3

Chromatic Polynomials

As said earlier, there are different ways in which a graph can be properly coloured.

So a graph G with n vertices can be properly coloured in many different ways using

a sufficiently large number of colours [2]. We can express this property of a graph

using a polynomial called chromatic polynomial.

For a graph G with n vertices chromatic polynomial can be denoted by Pn(λ)

and its value is defined as the number of ways of properly colouring a graph with

λ or fewer colours.

If for instance a graph G can be properly coloured using i colours in ci different

ways, then

Pn(λ) =
n∑

i=1

ci

(
λ

i

)
(3.1)

As there are
(
λ
i

)
different ways in which i colours can be selected from λ colours

and as a result there will be ci
(
λ
i

)
different ways of properly colouring a graph

using i colours out of the λ colours. So its sum as i vary will be the chromatic

polynomial.

Theorem:

The chromatic polynomial Pn(λ) of a graph G is a polynomial in λ [14].

Proof:

While colouring the graph G, V(G) will be partitioned into independent sets and

a unique colour will be assigned to each set. From the given λ colours there are λ

ways to choose a colour for the first set, (λ-1) ways to choose colours for the second

set and this process can be continued similarly for the other independent sets. As

a result there will be λ(λ-1)(λ-2). . . different possible ways in which the given

graph G can be properly coloured, which is its chromatic polynomial. Clearly, the

13



Applications of Vertex Colouring

chromatic polynomial is a polynomial [15].

It is not so easy to calculate chromatic polynomials in this simple method of

inspection. So in this context Deletion Contraction becomes useful.

Deletion-contraction:

Let G be a graph with an edge e incident on the vertices u and v. The deletion

of e is denoted by G - e and it is the graph obtained by deleting an edge e from

G without causing any change to the vertices. The contraction of e is denoted by

G/e. It is obtained from G - e by fusing the end vertices of the edge e deleted in

G - e earlier.

Theorem:

Let G be a graph and e be its edge, then its chromatic polynomial is,

PG(λ) = P(G−e)(λ)− P(G/e)(λ) (3.2)

Proof:

Given G is a graph and e an edge in it. Let u and v be the end vertices of e. To

get proper colouring u and v should be given different colours. But in G - e the

edge e is deleted, so no longer they are adjacent. So u and v can be given same or

different colours. In G/e u and v are fused as a single vertex, so they have same

colour.

∴ Total number of colourings of G - e is equal to the total number of colourings

of G/e and G.

Thus,

P(G−e)(λ) = PG(λ) + P(G/e)(λ)

On rearranging,

PG(λ) = P(G−e)(λ)− P(G/e)(λ)

Hence proved [16].

Properties:

• For any graph G the degree of chromatic polynomial is its number of vertices

in G.

• The leading coefficient in PG(λ) for any graph G is 1.

• The first coefficient will be positive and others will alternate in sign.

14
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• All the coefficients are integers [16].

• The chromatic polynomial of a complete graph on n vertices is λ(λ-1)(λ-

2)...(λ-n+1).

• A graph with n vertices is a tree iff its chromatic polynomial is λ(λ− 1)n−1.

As discussed in the introduction, the beginning of Graph colouring is by the

four colour conjecture. Next we discusses about the two important theorems in

graph colouring, which ultimately leads to the growth of this branch.

Four colour theorem:

Initially it appeared as a question raised by Francis Guthrie. He while colouring

the administrative map of England noticed that only four colours are needed to

colour the map such that neighbouring countries are given different colours. It

was first a conjecture. After a lot of proofs and disproofs finally it was proved in

1976. This was proved by Kenneth Appel and Wolfgang Haken with the help of

computers.

Four Colour theorem can be stated as follows, given any separation of a plane

into contiguous regions, producing a figure called map, no more than four colours

are required to colour the regions of the map so that no two adjacent regions have

the same colour. Or it can be stated in terms of vertex colouring as: the chromatic

number of every planar graph is atmost 4.

Five colour theorem:

This is a theorem formed by Heawood in 1890 to show that kempe’s proof on Four

colour theorem is wrong. It states that, the vertices of every planar graph can be

properly coloured with five colours.

15



Chapter 4

Applications

4.1 In Traffic Light Signals

One of the applications of Vertex colouring is in the traffic light signals. It can be

used to find the number of phases in which the signals should be operated so that

all vehicles could pass the traffic intersection without causing accidents. Here I

have considered an example of traffic intersection as given below and have used

vertex colouring to find the number of phases in which signals should be operated.

16



4.1. IN TRAFFIC LIGHT SIGNALS Applications of Vertex Colouring

(an example of traffic lanes at a street intersection)

Here there are 8 traffic lanes which are named as L1, L2, . . . L8 at the intersection

of two streets. The arrow marks shows the direction in which vehicles moves

through each lane. Here there is a traffic signal situated at the intersection. During

a particular phase the vehicles in the lane for which the signal is green will passes

through the intersection.We can use vertex colouring in this context to find the

minimum number of phases needed such that all vehicles passes the intersection

smoothly.

The problem can be transformed into a graph colouring problem. Here a

graph G is constructed whose vertices will represent each lanes L1, L2, . . . L8. Let

17



4.2. SUDOKU Applications of Vertex Colouring

V(G)={L1, L2, . . . L8}. So there will be 8 vertices in this particular case. Now

connect the vertices with edges if vehicles cannot run together without chances of

accidents through the corresponding lanes represented by the vertices. For eg., in

this case edges are connected between L2 and L4 as the vehicles in these lanes are

moving in the same direction. Also an edge is connected between L2 and L8 as

vehicles move across each other at intersection through these lanes. In a similar

manner edges are drawn between vertices. And a proper vertex colouring is given

to the graph so obtained, as given below.

(Graph G formed for the above problem)

In order to find the minimum number of phases in which the traffic signal should

be operated so that all vehicles pass the intersection smoothly, we have to find the

chromatic number of the graph G. From the proper colouring it is clear that it is

4. So our solution is obtained [10].

In this way vertex colouring can be used to model real life problems and to

solve it.

4.2 Sudoku

Sudoku is a logic based, combinatorial, number placement puzzle. It is a single

player game. A classic Sudoku puzzle consists of a 9x9 grid with numbers ranging

from 1 to 9 such that no number is repeated in each row, each column and each of

the nine 3x3 subgrid that constitute the whole grid. The player will be provided

18



4.2. SUDOKU Applications of Vertex Colouring

with a partially filled Sudoku puzzle and his or her aim is to complete the puzzle

using numbers from one to nine, satisfying the above said condition [17].

A Sudoku is solved by the classical pen and paper method. But it can also be

solved simply with the help of various algorithms and computer programs. Solving

of Sudoku can be considered as an application of vertex colouring too. ie., solving

a Sudoku can be considered as an vertex colouring problem.

Even though a standard Sudoku is 9x9, here we considered the case of a 4x4

Sudoku puzzle which is partially filled with numbers from one to four. A 4x4

Sudoku have four rows, four columns and four 2x2 subgrids. There are 16 cells in

such a Sudoku puzzle. Our aim is to fill the blank cells in it using numbers from

1 to 4. Inorder to do this we first convert it as a graph colouring problem.

For that a graph with 16 vertices is created. These 16 vertices corresponds to

the 16 cells of the Sudoku and two vertices are connected by an edge if they cannot

have the same value. Therefore vertices corresponding to cells in same row, same

column or same 2x2 subgrid have edges between them, since no number can be

repeated in the same row, same column and same 2x2 sub grid. Then a proper

colouring of this graph will be the solution to the Sudoku puzzle. Here colours

will be the numbers 1, 2, 3 and 4. In this way we can transform a Sudoku puzzle

into a graph colouring problem. In this case the graph colouring problem can be

solved using four colours since the chromatic number of graph created is four [18].

We can consider a graph colouring problem in different ways:-

1. A graph and a set of colours will be provided. Our aim will be to find the

all possible ways in which the given graph can be coloured using the given

colours.

2. To find whether the given graph can be coloured using the given set of colours.

It is known as a m-colouring decision problem.

3. To find the minimum number of colours required to colour a given graph while

the set of colours is not given. It can be called as a m-colouring optimization

problem.

Here we will consider the solving of Sudoku as an m-colouring decision problem.
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4.2. SUDOKU Applications of Vertex Colouring

4.2.1 Algorithm

Our objective is to give colour to each of the vertices one by one. If the vertex

0 is given a particular colour, then while giving colour to the next vertex, check

whether the colour is not the same. If there is a colour assignment that satisfies

these conditions, keep it as part of solution. If not so, backtrack and return

false [19]. So the algorithm will be as follows:

1. Create a recursive function whose arguments are current vertex index, number

of vertices and output colour array.

2. Check whether the current vertex index and number of vertices are equal.

3. If step 2 satisfied, return true. Then print colour configuration as output

array.

4. Give colour to a vertex. While doing so make sure the adjacent vertices are

having different colours.

5. Recursively call the function with next index and number of vertices [19].

6. Break the loop and return true if recursive function also returns true and

return false if there is no such recursive function.

There are many other algorithms and corresponding programs to solve Sudoku

using vertex colouring. Here by using the above algorithm a python program will

be produced.

4.2.2 Python Program

First of all a python program named model.py is created to generate graph. It

mainly consists of two classes named as Vertex and Graph. In Vertex class

different types of functions are created. First one is init which is similar to a

constructor in C++ and it is used to initialize the class. In it the instance variables

are id, data and connectedTo. The connectedTo is a dictionary which is used to

store the ids of vertices connected to it along with its weight. Next in the function

named add neighbour the id and weight pair is stored to the connectedTo

dictionary. To the last part of this particular class a setter is used to set the value

of private attributes of the class and a set of getters are used to get access to the

private attributes of the class.
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The second class created was Graph. In it the total number of vertices in

the graph is represented by a variable named totalvertices. At the beginning of

this class totalvertices is initialized by the value zero. The program contains a

dictionary called allvertices which stores the vertex id as both key and its value.

This dictionary will help in accessing the vertices of the graphs with just its ids.

Next a function named addvertexdata is defined to create a vertex and to store

it to the allvertices dictionary and a function named addedge is created to add

edges between two given vertices. Then a function is defined to check whether

each vertex is a neighbour of the other, for all vertex pair combinations. This

function is named as isneighbour. A function is defined to print the edges and it

is named as printedges. Now similar to the last class a set of setters and getters

are defined in this class too.

After the creation of two classes a test main function is created. In it the

Graph class is called first and a graph object is created and to it six vertices with

ids from zero to five is added [19]. Then the remaining code is builded by using

previous functions in the classes to add edges between vertices and to print them.

This module is saved as a file named model.py. In this way a blueprint of graph

and vertices are created. Now in the next program by using this we will create

our graph.

Python code of model.py (program 1):

class Vertex:

def __init__(self, idx, data=0):

self.id = idx

self.data = data

self.connectedTo = dict()

def add_neighbour(self, neighbour, weight=0):

if neighbour.id not in self.connectedTo.keys():

self.connectedTo[neighbour.id] = weight

def setdata(self, data):

self.data = data
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def getconnections(self):

return self.connectedTo.keys()

def getid(self):

return self.id

def getdata(self):

return self.data

def getwght(self, neighbour):

return self.connectedTo[neighbour.id]

def __str__(self):

return str(self.data) + " Connected to : " + \

str([x.data for x in self.connectedTo])

class Graph:

totalvertices = 0

def __init__(self):

self.allvertices = dict()

def addvertex(self, idx):

if idx in self.allvertices:

return None

Graph.totalvertices += 1

vertex = Vertex(idx=idx)

self.allvertices[idx] = vertex

return vertex
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def addvertexdata(self, idx, data):

if idx in self.allvertices:

vertex = self.allvertices[idx]

vertex.setData(data)

else:

print("No id to add the data.")

def addedge(self, src, dst, wt=0):

self.allvertices[src].add_neighbour(

self.allvertices[dst], wt)

self.allvertices[dst].add_neighbour(

self.allvertices[src], wt)

def isneighbour(self, u, v):

if u >= 1 and u <= 16 and v >= 1 and v <= 16 and\

u != v:

if v in self.allvertices[u].getconnections():

return True

return False

def printedges(self):

for idx in self.allvertices:

vertex = self.allvertices[idx]

for con in vertex.getconnections():

print(vertex.getid(), " --> ",

self.allvertices[con].getid())

def getvertex(self, idx):
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if idx in self.allvertices:

return self.allvertices[idx]

return None

def getallverticesids(self):

return self.allvertices.keys()

def main():

g = Graph()

for i in range(6):

g.addvertex(i)

print("Vertices : ", g.getallverticesids())

g.addedge(src=0, dst=1, wt=5)

g.addedge(0, 5, 2)

g.addedge(1, 2, 4)

g.addedge(2, 3, 9)

g.addedge(3, 4, 7)

g.addedge(3, 5, 3)

g.addedge(4, 0, 1)

g.addedge(5, 4, 8)

g.addedge(5, 2, 1)

g.printedges()

main()

Output:
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In the next program first of all the Graph class is imported from the previous

program and then created a class called Sudoku. In it inside a constructor the

total value of rows, columns and blocks are initialized. Since we are using a 4x4

matrix values are given accordingly. Also a function to generate the vertices is

called inside the constructor. This function is defined outside the constructor and

the vertices created by the function are stored in the instance variable self.graph.

Now as vertices are created our next aim is to connect edges between vertices in

the same row, same column and same 2x2 block. For connecting the vertices the

method called connectedges(self) is called.

Inorder to connect edges like as said above, one need to know the position

of each vertex. For that first each vertex is given a position using getgridma-

trix(self) function [19]. Then a particular element is named as head and we will

need to find which all other vertices are connected to it. Similarly the process

should be repeated for all other vertices by considering them as individual cases.

For that a nested loop is used. The function whattoconnect will decide which

all elements should be connected to head. This function has a dictionary named

connections which stores all these connections. It will store row as the key and

all the ids in the row as key value. Similarly cols will be a key with value as ids

in the column and the next key is block with value as all ids in the 2x2 block.

Now to connect a vertex and every other vertices in the same row a for loop

is used so that row will remain same and column value gets changed. Similarly

to connect the vertex with all vertices in the same column a for loop is again

used. Inorder to connect a vertex and other vertices in the same 2x2 block a set
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of if-else conditions are used. After these for loops and if-else conditions we

will get ids of the vertices in same row, same column and same block which are

to be connected. Now using these ids the vertices can be connected as per the

constraints.

Finally a function test connections is defined in which the class Sudoku is

called. Then vertices are generated and connected them as per the conditions

made in the class.

This program is saved as a module named connections.py. The program code

for connections.py (program 2) is as follows:

Python program for connections.py (program 2):

from model import Graph

class Sudoku:

def __init__(self):

self.graph = Graph()

self.rows = 4

self.cols = 4

self.total_blocks = self.rows * self.cols

self.generateGraph()

self.connectedges()

self.allids = self.graph.getallverticesids()

def generateGraph(self):

for idx in range(1, self.total_blocks + 1):

_ = self.graph.addvertex(idx)

def connectedges(self):

matrix = self.getmatrix()

head_connections = dict()

for row in range(4):
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for col in range(4):

head = matrix[row][col]

connections = self.whattoconnect(

matrix, row, col)

head_connections[head] = connections

self.connectthose(head_connections=head_connections)

def connectthose(self, head_connections):

for head in head_connections.keys():

connections = head_connections[head]

for key in connections:

for v in connections[key]:

self.graph.addedge(src=head, dst=v)

def whattoconnect(self, matrix, rows, cols):

connections = dict()

row = []

col = []

block = []

for c in range(cols + 1, 4):

row.append(matrix[rows][c])

connections["rows"] = row

for r in range(rows + 1, 4):

col.append(matrix[r][cols])

connections["cols"] = col

if rows % 2 == 0:

if cols % 2 == 0:

block.append(matrix[rows + 1][cols + 1])
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elif cols % 2 == 1:

block.append(matrix[rows + 1][cols - 1])

elif rows % 2 == 1:

if cols % 2 == 0:

block.append(matrix[rows - 1][cols + 1])

elif cols % 2 == 1:

block.append(matrix[rows - 1][cols - 1])

connections["blocks"] = block

return connections

def getmatrix(self):

matrix = [[0 for cols in range(self.cols)]

for rows in range(self.rows)]

count = 1

for rows in range(4):

for cols in range(4):

matrix[rows][cols] = count

count += 1

return matrix

def test_connections():

sudoku = Sudoku()

sudoku.connectedges()

print("All vertex ids : ")

print(sudoku.graph.getallverticesids())

print()

for idx in sudoku.graph.getallverticesids():

print(idx, "Connected to->",

sudoku.graph.allvertices[idx].getconnections())

test_connections()

Output:
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Now from the above program connections.py the class Sudoku is called to a

new program. Here a new class Sudoku soln() is created to print an incomplete

Sudoku that we have chosen. Now to the next part of program the algorithm will

be applied. For that first a function named graphcoloring is created which will

assign colours to the index which are given in the puzzle. For that the variable

color which is a one dimensional array is used in which each index is a vertex and

value at vertex represents the colour given to that vertex. So in this case colours

are numbers from one to four. Also the variable partial soln is a list used to store

the numbers provided in the puzzle. As per the algorithm a recursive function will

be called to the last of this function definition.

Now in the next function graphcolor at first it is checked whether the vertex

u is equal to the total number of vertices, if so it will return true. After that a for

loop is used to colour u using numbers from one to four. Before doing so using

the function it is verified whether the vertex can be coloured with that chosen

colour or not. If it returns true then it can be safely coloured so and again the

same function is called repeatedly for the next vertices till it returns false [19]. If
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the function returns false then that vertex cannot be coloured with that colour,

so program will skip to the next iteration, that is to the next colour. Actually

in the function it is checked whether u is in the list given and if so it will check

whether the colour given to u matches with the colour at that vertex then it will

return true, otherwise it will return false. Also it checks whether the neighbours

of u are already given the colour we are trying to assign to it, if so then also the

function will return the value as false. In this way each index position is given a

colour/number and that will ultimately becomes the solution of the Sudoku. This

set of program is saved as a file named solve sudoku.py

Python code of solve sudoku.py(program 3):

from connections import Sudoku

class sudoku_soln:

def __init__(self):

self.puzzle = self.getpuzzle()

self.sudokugraph = Sudoku()

self.mappedgrid = self.getmatrix()

def getmatrix(self):

matrix = [[0 for cols in range(4)]

for rows in range(4)]

count = 1

for rows in range(4):

for cols in range(4):

matrix[rows][cols] = count

count += 1

return matrix

def getpuzzle(self):

puzzle = [
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[0, 0, 0, 4],

[4, 0, 1, 0],

[0, 1, 0, 0],

[0, 0, 3, 0]

]

return puzzle

def printpuzzle(self):

print(" 1 2 3 4 ")

for i in range(len(self.puzzle)):

if i % 2 == 0:

print(" - - - - - - - - - ")

for j in range(len(self.puzzle[i])):

if j % 2 == 0:

print(" | ", end="")

if j == 3:

print(self.puzzle[i][j], " | ", i + 1)

else:

print(f"{self.puzzle[i][j]} ", end="")

print(" - - - - - - - - - ")

def is_blank(self):

for row in range(len(self.puzzle)):

for col in range(len(self.puzzle[row])):

if self.puzzle[row][col] == 0:

return (row, col)

return None

def is_valid(self, num, pos):

for col in range(len(self.puzzle[0])):

if self.puzzle[pos[0]][col] == num and\
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pos[0] != col:

return False

for row in range(len(self.puzzle)):

if self.puzzle[row][pos[1]] == num and\

pos[1] != row:

return False

x = pos[1] // 2

y = pos[0] // 2

for row in range(y * 2, y * 2 + 2):

for col in range(x * 2, x * 2 + 2):

if self.puzzle[row][col] == num and (

row, col) != pos:

return False

return True

def solve(self):

blank = self.is_blank()

if blank is None:

return True

else:

row, col = blank

for i in range(1, 5):

if self.is_valid(i, (row, col)):

self.puzzle[row][col] = i

if self.solve():

return True
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self.puzzle[row][col] = 0

return False

def graphcoloring(self):

color = [0] * (self.sudokugraph.graph.

totalvertices + 1)

partial_soln = []

for row in range(len(self.puzzle)):

for col in range(len(self.puzzle[row])):

if self.puzzle[row][col] != 0:

idx = self.mappedgrid[row][col]

color[idx] = self.puzzle[row][col]

partial_soln.append(idx)

return color, partial_soln

def color_graph(self, m=4):

color, partial_soln = self.graphcoloring()

if self.graphcolor(m=m, color=color,

u=1, partial_soln=partial_soln) is None:

print(":(")

return False

count = 1

for row in range(4):

for col in range(4):

self.puzzle[row][col] = color[count]

count += 1

return color

def graphcolor(self, m, color, u, partial_soln):

if u == self.sudokugraph.graph.totalvertices + 1:

return True
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for c in range(1, m + 1):

if self.iscolorable(u, color, c, partial_soln):

color[u] = c

if self.graphcolor(

m, color, u + 1, partial_soln):

return True

if u not in partial_soln:

color[u] = 0

def iscolorable(self, u, color, c, partial_soln):

if u in partial_soln and color[u] == c:

return True

elif u in partial_soln:

return False

for i in range(1, self.sudokugraph.graph.

totalvertices + 1):

if color[i] == c and self.sudokugraph.\

graph.isneighbour(u, i):

return False

return True

def test():

s = sudoku_soln()

print("BEFORE SOLVING ...")

print("\n\n")

s.printpuzzle()

print("\nSolving ...")

print("\n\n\nAFTER SOLVING ...")

print("\n\n")

s.color_graph(m=4)

s.printpuzzle()
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test()

Output:
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4.3 Frequency Assignment

Radio waves are the ones in the electromagnetic spectrum with longest wavelength

and lowest frequencies. The rate of oscillation of electromagnetic radio waves are

ranging from 3 kHz to 300 GHz and these currents carrying radio signals is referred

as Radio Frequency [20]. Mainly radio frequencies are used for communication and

broadcasting purposes, like its use in Television, Mobile phones, Radio, etc. In

this context, it is referred to as frequency band. Radio wave consists of differ-

ent frequencies. Correspondingly frequency band is divided into different bands

like VHF(Very High Frequency), FM (Frequency Modulation) Radio, SW (Short

Wave) Radio, etc. Here each band is allocated for a certain purpose. In this way

every wireless technology works in the range of a certain frequency band.

Likewise FM radio stations are also allocated by a particular frequency band

between 88 MHz and 108 MHz. In this different FM stations operates at different

frequencies. Then as we tune the radio to a particular frequency, we can listen to

stations operating at that particular frequency. But we may have noticed when

we travel from one place to another without even changing the frequency other

stations get played in the radio. This is because there are more than one radio

station operating at the same frequency. So if all those radio stations with same

frequencies or even adjacent frequencies are operating in the same geographical

area, the frequencies will interfere to each other and it would create unnecessary

noise. This will leads to quality loss and creates disturbance to the user. So we

have to allocate radio frequencies to the radio towers in such a way that there is

no frequency interference. This is a general problem in assignment of frequencies

in the case of Mobile Phone, FM stations, Television broadcasting, etc. And this

is known as frequency assignment problem. In this paper we will be discussing

about the frequency assignment problem in the case of FM stations.

In an area there will be a number of towers for the purpose of radio broadcast-

ing. Each tower can be used to transmit more than one frequency. But care must

be taken while allocating frequencies to the towers. Because if same frequency or

even adjacent frequencies are allocated to the same tower or to towers which are

near to each other it will cause overlapping of frequencies as said earlier. Inorder

to avoid this we could make use of vertex colouring. Also the radio frequencies
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available are limited, therefore there should be more than one station with the

same frequency, but care should be taken about the distance between the trans-

mitters with same frequency. In this regard too vertex colouring will be helpful

to ideally allocate frequencies [21].

So frequency allocation can be considered as a vertex colouring problem. Here

first a graph will be constructed with towers as vertices and two towers are con-

nected by an edge if the areas at which they are constructed overlap with each

other. Then we will try to properly colour this graph. Here different colours rep-

resent the different frequencies. So nearby towers will be coloured with different

colours. Thus, frequency allocation can be done using vertex colouring.

4.4 Register Allocation

A compiler is used to translate a source code to machine code. A compiler does

this with the help of an intermediate code [22]. Intermediate code uses a lot of

temporary variables. Since these variables are used frequently, they are placed

in registers. Because variables stored in registers can be easily accessed by the

computer comparing to other memory locations. So storing the temporaries in

registers will increase efficiency as it would reduce the program execution time.

But for a computer the number of registers available is limited. But one should

remember that not all temporaries are used at the same time, so they can be

placed in the same register. But variables which are used at the same time should

not be stored in the same register. So if there are more variables than the registers

available then some will be moved to RAM and will be brought back to register

as and when required [23]. This process is known as Register spilling. Accessing

RAM is time consuming than registers. So there is a need to reduce spilling.

For that as much as possible variables should be allocated to all the registers

available. But care should be taken not to allocate the variables used at same run

time to the same register. Register allocation is the process by which the tempo-

rary variables are assigned to the available registers without allocating variables

which are used simultaneously to the same register. It determines which variable

at what time of program execution should be allocated to suitable registers.

Register allocation can be considered as a graph colouring problem. Even

though John Cocke have studied about this relationship in 1971, the breakthrough
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occurred when G. J Chaitin along with his colleagues in 1981 implemented it in

a compiler [24]. Graph colouring is one of the most prominent method to do

register allocation. To do register allocation with the help of vertex colouring first

an undirected graph should be created with vertices representing each temporary

variables used. Edges are added between vertices if they are simultaneously used

in any part of the code. So it creates a register interference graph. Here the

vertices are coloured such that no two adjacent vertices have the same colour.

Each colour constitutes each registers. So in register allocation problem our aim

is to minimize the number of colours used and it should not exceed the number

of colours given. This problem can be considered as a k-colouring too, i.e. to

properly colour the interference graph using k given colours.

38



Chapter 5

Conclusion

Throughout this paper we discussed about vertex colouring and its applications.

From this study it is clear that many complicated problems can be easily solved

by vertex colouring. Problems that need minimum number of solutions and max-

imum result mainly utilize this method. Also through this project paper from

the discussion about the application of vertex colouring in traffic light signals,

frequency allocation, solving of Sudoku and register allocation we tried to show

how vertex colouring is used in activities that are part of our life in one way or

another. Vertex colouring has many other applications too. It can be used to

schedule aircrafts, exams, classes etc. It is used in storage problems that come

from the branch of Chemistry. In this way vertex colouring has a lot of appli-

cations in many disciplines. Also it is a branch of mathematics in which many

researches are still taking place.
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