Project Report
On

A STUDY OF DEALING INFECTIOUS
DISEASES MATHEMATICALLY

Submitted
in partial fulfilment of the requirements for the degree of
MASTER OF SCIENCE
n
MATHEMATICS
by
RANIYA J ANTONY
(Register No. SM20MAT013)
(2020-2022)

Under the Supervision of

SMT VEENA V.S

ST. TERESA’S COLLEGE
(AUTONOMOUS)

DEPARTMENT OF MATHEMATICS
ST. TERESA’S COLLEGE (AUTONOMOUS)
ERNAKULAM, KOCHI - 682011
APRIL 2022



ST. TERESA’
A’S COLLEGE (AUTONOMOUS), ERNAKULAM

MR ESTON 9 Zs e

CERTIFICATE

This is to certify that the dissertation entitled, A STUDY OF DEALING
INFECTIOUS DISEASES MATHEMATICALLY is a bonafide record of
the work done by Ms. RANIYA J ANTONY under my guidance as partial
fulfillment of the award of the degreec of Master of Science in Mathematics
at St. Teresa’s College (Autonomous), Emakulam affiliated to Mahatma Gandhi
University, Kottayam. No part of this work has been submitted for any other
degree elsewhere.

Date: &7/0‘5,20&’.02.
Place: Ernakulam

g‘g - G,
Sm\t{ eena V.S A 3 \!
t

Assistant Professor,

Department of Mathematics, »/
St. Teresa’s College(Autonomous),
Ermnakulam. (\ _
Dr.Ursala Paul
Assistant Professor,
Department of Mathematics,
St. Teresa’s College(Autonomous),
Ernakulam.
External Examiners

DALFES

1:321.!(.7/9-....M.ﬂ£.7 L
‘:‘a'{ ”?"S; !




DECLARATION

reby declare the § sl o
[ hereby declare that the work presented in this project is based on the original

work done by e under the guidance of SMT VEENA V.S, Assistant Professor,
Departiment of Mathein

atics, St. Teresa's College( Autonomous), Ernakulam and

has not been included in any other project submitted previously for the award of

a2

Place: Ernakulain RANIYA J ANTONY

any degree.

Date: R 7= 05-2028 SM20MATO013

il




!
}
5
i

ACKNOWLED GEMENTS

I must mention several individuals who encouraged e to carry out this work.

Their continuous invaluable knowledgable guidance throughout this study helped

me to complete the work up to this stage.

I'am very grateful to my project guide (Sint Veena V.S) for the immense help

during the period of work.

In addition, the very energetic and competitive atmosphere of the department
had much to do with this work. I acknowledge thanks to faculty, teaching and

non-teaching staff of the department and colleagues.

[ am also very thankful to HoD, Dr.Ursala paul for her valuable suggestions,

critical examination of work during the progress. M

Place: Ernakulam. RANIYA J ANTONY
Date: &7 /05[2022 SM20MAT013:




Contents

BRTIFPICATE : : o c 5 6.5 % 5 % 6.6 % 5 & %6 5 § % & 8 % 68 & & i
DEBCEARATION : o o « 5 605 w5 % 66 % 8 @ s 5 6 % & & 5 bod & & iii
ACKNOWLEDGEMENTS . « : « ¢ « o s 5 5« 2 s 5 0 6 5 a5 & iv
CEINTENT ..« i & 55 58 5 58 5 5@ %5 % 66 6 s 688525185 v

1 Introduction and History 1
1.1 INTRODUCTION .. .. ... ... 1
1.2 HISTORY . . . . i e e e e e e e e e e e e et 1

2 Modelling of infectious diseases 3
2.1 Steps of mathematical modelling . ... ... ....... 3
2.2 Importance of Mathematical Modelling .. ........ 3

3 EPIDEMIC MODELLING 4
3.1 TYPES OF EPIDEMIC MODELS ... .. ..¢«:«2: 4
3.1.1 Stochastic. . ... ... . ... ... . ..., 4

3.1.2 Deterministic. . . ... .. ... ... 000 )

3.1.3 The SIRModel .................... )

3.1.4 Other Compartmental Models . ... .. ... .. 6

3.2 Continuous Time Modelling . ... ... .......... 6

4 Disease Transmission 8
4.1 How to prevent disease transmission . . . . ... ... .. 8
Aol DMIBESE o o « w2 = o« 8 0@ m s ® B @ w s E s s B 8

4.1.2 Foodborneillness ... ... ... ... ....... 9

4.1.3 Insectsand animals . . ... ... ... ....... 9

4.1.4 Vaccinations . .. .. ... ... 9



4.2

4.3

4.4

Infectiousness comprises three major components: bio-
logical, behavioural and environmental. . .. ... .. ..
4.2.1 Biological infectiousness over time after infection

for three different human pathogens . . . . . . ..

4.2.2 Pathogen Transport and Transmission risk . . . .

Expiratory events and aerosol generation ... ... ...
4.3.1 Coughsandsneezes . . ... ... ..........
4.3.2 Breathing and talking . ...............

Graphical representation of the spread of infectious dis-

BAGER o v x s @ mo¥ w2 oW B L E BB P K S SR N LE BE ¥ L@ H K
AA1 NEBFEE « « » » « v « 5 s58 ® 5 8 58 % 28 BE oW 2w w o
A [BEHEHE o + o s s 5« 2 v @ ® § % B8 ¥ 8 8 B E B 5N B
A4S CHidMEN POY . » o « o » o 5 ¢ % 55 © ¢ 55 0 3 8 ® 3

Applications in Modelling of Infectious Diseases

Conclusion

REFERENCES . . . . . o o i i it i i ittt i it e v e

vi

10

10
11
11
11
12

13
13
14
14

16

17
18



Chapter 1

Introduction and History

1.1 INTRODUCTION

Mathematical models can project how infectious diseases progress to
show the likely outcome of an epidemic and help inform public health
interventions. Models use basic assumptions or collected statistics along
with mathematics to find parameters for various infectious diseases and
use those parameters to calculate the effects of different interventions,
like mass vaccination programmes. The modeling can help decide which
interventions to avoid and which to trail, or can predict future growth
patterns, etc. COVID-19 is one of the major examples among infectious
diseases. Six feet was proposed as a safe separation distance to prevent
the spread of COVID-19 Diseases transmission can also occur through
contact of contaminated surfaces, but this work focuses on transmis-
sion via inhalation of expelled aerosols during coughing/sneezing and

breathing/talking and the impact of environmental factors.

1.2 HISTORY

The modelling of infectious diseases is a tool that has been used to
study the mechanism by which diseases spread to predict the future
course of an outbreak and to evaluate strategies to control an epidemic.
The earlier account of mathematical modelling of the spread of dis-
eases was carried out in 1760 by Daniel Bernoulli, trained as a physi-

cian; Bernoulli created a mathematical model to define the practice of



inoculating against smallpox. First model in mathematical epidemiol-
ogy is the work of Daniel Bernoulli (1700-1782) on inoculation against
smallpox. In the eighteenth century smallpox was an epidemic. G. R.
Phaijoo and D. B. Gurung established that dengue is spreading in new
areas due to people movement. They considered a multipath model
to assess the influence of temperature and human movement on the
transmission dynamics of dengue disease. Dynamics of vector and host
populations are investigated with different human movement rates and
different temperature levels. N. Pipatsart et al. discussed adaptive ran-
dom network models to describe human behavioural change throughout
epidemics and performed stochastic simulations of SIR epidemic models

on adaptive random networks.



Chapter 2

Modelling of infectious diseases

The modeling of infectious diseases is a tool that has been used to study
the mechanisms by which diseases spread, to predict the future course

of an outbreak and to evaluate strategies to control an epidemic.

2.1 Steps of mathematical modelling

The stages involved in mathematical modelling are formulation, solu-
tion, interpretation and validation.Emphasizes that mathematical mod-
eling is a non-linear process that includes five interrelated steps: (i)
Identify and simplify the real- world problem situation. (ii) Build a
mathematical model. (iii) Transform and solve the model. (iv) Inter-

pret the model. (v) Validate and use the model.

2.2 Importance of Mathematical Modelling

Mathematical modelling is capable of saving lives, assisting in policy
and decision-making, and optimizing economic growth. It can also be
exploited to help understand the Universe and the conditions needed
to sustain life,used to study the mechanisms by which diseases spread,
to predict the future course of an outbreak and to evaluate strategies

to control an epidemic.



Chapter 3

EPIDEMIC MODELLING

Mathematical modeling of infectious diseases has become a key tool in
order to understand, predict and control the spread of infections.The
aim of epidemic modelling is thus to model the spread of a disease in a
population made up of a (possibly large) integer number of individuals.
Population is divided into classes of susceptible, infective and recovered
individuals.Disease dynamics can then be characterized by a mathemat-
ical description of each individual’s transitions between compartments,

subject to the state of the remaining individuals.

3.1 TYPES OF EPIDEMIC MODELS

3.1.1 Stochastic

“Stochastic” means being or having a random variable. A stochastic
model is a tool for estimating probability distributions of potential out-
comes by allowing for random variation in one or more inputs over time.
A stochastic model, in its formulation, takes into account the random
nature of an infectious disease. The stochastic model we study here
is based on the ”birth-and-death process with immigration” (BDI for
short), which was proposed in the study of population growth or ex-
tinction of some biological species The stochastic mathematical models
of infectious diseases represent a more realistic approach to epidemics,
because they allow the recognition of the initial patterns in an epi-

demic the analysis of the spatial distribution of case numbers in a given



location, and allow estimations about the duration of an epidemic

3.1.2 Deterministic

In deterministic models, the output of the model is fully determined
by the parameter values and the initial conditions. When dealing with
large populations, as in the case of tuberculosis, deterministic or com-
partmental mathematical models are often used. In a deterministic
model, individuals in the population are assigned to different subgroups
or compartments, each representing a specific stage of the epidemic.
The transition rates from one class to another are mathematically ex-
pressed as derivatives, hence the model is formulated using differential
equations. While building such models, it must be assumed that the
population size in a compartment is differentiable with respect to time
and that the epidemic process is deterministic. In other words, the
changes in population of a compartment can be calculated using only

the history that was used to develop the model

3.1.3 The SIR Model

W.0O. Kermack and A.G Kendrick created a model in which they con-
sidered a fixed population with only three compartments: susceptible,
S (t); infected, I (t); and recovered, R (t). S (t) is used to represent
the individuals not yet infected with the disease at time t, or those
susceptible to the disease of the population. I (t) denote the individu-
als of the population who have been infected with the disease and are
capable of spreading the disease to those in the susceptible category. R
(t) is the compartment used for the individuals of the population who
have been infected and then removed from the disease, either due to
immunization or due to death. Those in this category are not able to
be infected again or to transmit the infection to others. The second set
of dependent variables represents the fraction of the total population
in each of the three categories. So, if N is the total population s(t) =
S(t)/N, the susceptible fraction of the population, i(t) = I(t)/N, the
infected fraction of the population, and r(t) = R(t)/N, The recovered

fraction of the population.



3.1.4 Other Compartmental Models

There are many modifications of the SIR model, including those that in-
clude births and deaths, where upon recovery there is no immunity (SIS
model), where immunity lasts only for a short period of time (SIRS),
where there is a latent period of the disease where the person is not
infectious (SEIS and SEIR), and where infants can be born with immu-

nity (MSIR).

3.2 Continuous Time Modelling

Anderson and May (1991) Diekmann and Heesterbeek (2000) Keeling
and Rohani (2008) Gave an introduction to epidemic modelling using
primarily deterministic models based on ordinary differential equations
(ODEs) in the setting of the susceptible-infective-recovered (SIR) model
and its extensions. In a continuous model, events can take place at
every point in time. For example, the time between birth and death
can be any positive decimal number. Let S(t), I(t) and R(t) Denote

the number at time t of susceptible, infective and recovered individuals,

respectively.
ds(t)
o = R SOI®) (3.1)
O _ 2 s -1 32
dl;_gﬂ =1(?) -8

Where the parameter § > 0 is the transmission rate and v < 0 describes
the removal rate. The initial condition is given by S (0), I (0), which
are known integers, and R (0) = 0. In a population of fixed size N=S

(0) 4+ I (0) the expression for

dR(t)



in the above ODE system is redundant because R (t) is implicitly given
as

N —S(t) - I(t) (3.5)



Chapter 4

Disease Transmission

Epidemics of infectious diseases among humans and other animals re-
sult from the transmission of a pathogen either directly between hosts
or indirectly through the environment or intermediate hosts. The envi-
ronment is important for the survival of intermediate hosts and vectors,
which can affect the efficiency of transmission. Infectious diseases are

often spread through direct contact.

4.1 How to prevent disease transmission

Because infectious diseases can spread through direct or indirect con-
tact, everyone is at risk of illness. You have a higher risk of becoming
ill when you’re around sick people or in areas susceptible to germs. If
you work in or visit a care centre, a day-care centre, a hospital, or a

doctor’s office, takes extra precautions to protect you.

4.1.1 Illness

Something as simple as touching a doorknob, elevator button, light
switch, or another person’s hand increases the likelihood of coming in
contact with germs that can make you sick. The good news is that
a few simple precautions can prevent some disease transmission. For
example, make sure you wash your hands frequently and thoroughly.
Use soap and warm water and vigorously rub your hands together for
at least 20 seconds. If you can’t wash your hands, use an alcohol-based

hand sanitizer. Washing your hands is the gold standard though. Other



tips to prevent the spread of disease in areas with germs include: e wash
your hands or use hand sanitizer before handling food and after shaking
hands e always wash with soap and water if your hands are visibly soiled
e try to minimize touching your mouth or nose with your hands e avoid
sick people, if possible e wear disposable gloves to avoid contact with
blood and faces e use disposable gloves when caring for an ill person
e cover your mouth when you sneeze and cough and wash your hands
afterward e teach children not to put their hands or objects in their

mouths e sanitize toys and changing tables

4.1.2 Foodborne illness

Dangerous organisms can thrive in improperly prepared food. Avoid
cross-contamination by keeping raw meats and produce separate. Use
different preparation surfaces for raw meats and wash surfaces and uten-
sils thoroughly. Freeze or refrigerate perishable foods and leftovers
promptly. According to the United States Department of Agriculture,
you should set your refrigerator to 40°F (4°C) or below and your freezer
to 0°F (-18°C) or below. Cook meats to a minimum internal tempera-
ture of 145°F (63°C). Cook ground meats to 160°F (71°C) and poultry
to 165°F (73°C).

4.1.3 Insects and animals

When camping or enjoying wooded areas, wear long pants and long
sleeves. Use insect repellent and mosquito netting. Don’t touch animals

in the wild. Don’t touch sick or dead animals.

4.1.4 Vaccinations

Stay up to date on vaccinations, especially when traveling. Don’t forget
to keep your pet’s vaccinations current, too. Vaccinations can drasti-
cally reduce your risk of becoming ill with some infectious diseases. If
you can avoid a particular disease, you can also prevent the spread of
the disease. There are different types of vaccinations, such as those to

prevent: e measles @ mumps e influenza e human papillomavirus



4.2 Infectiousness comprises three major components: bi-

ological, behavioural and environmental.

4.2.1 Biological infectiousness over time after infection for three dif-

ferent human pathogens

Figure 4.1: Influenza A:based on viral shedding in experimental human infections.

nfectiousness
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Figure 4.2: HIV-1 based on retrospective analysis of HIV-1 discordant couples and viral load
data.
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nfectiousness
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Figure 4.3: Malaraia: infectiousness to mosquitoes of infected humans based on the detection of
infectious gametocytes in the blood after therapeutic treatment of syphilis by inoculation with
plasmodium vivax.

4.2.2 Pathogen Transport and Transmission risk

An integrated modelling approach has been developed to better un-
derstand the relative impacts of different expiratory and environment
factors on airborne pathogen transport and transmission, motivated by
the recent COVID-19 pandemic. Computational fluid dynamics (CFD)
modelling was used to simulate spatial-temporal aerosol concentrations
and quantified risks of exposure as a function of separation distance,

exposure duration, environmental conditions and face coverings.

4.3 Expiratory events and aerosol generation

4.3.1 Coughs and sneezes

Expiratory actions such as coughing and sneezing can yield thousands
of minor respiratory droplets extending in size from 1 — 1000pm that
are expelled from the nose and mouth at high velocities. During a
sneeze, respiratory droplets are expelled at velocities over 20m/s for
brief periods typically lasting up to 0.25 s. Expiratory actions such as
coughing and sneezing can yield thousands of minor respiratory droplets
extending in size from 1 — 1000pum that are expelled from the nose

and mouth at high velocities. During a sneeze, respiratory droplets

11



are expelled at velocities over 20m/s for brief periods typically lasting
up to 0.25 s. Expiratory actions such as coughing and sneezing can
yield thousands of minor respiratory droplets extending in size from 1
— 1000umthat are expelled from the nose and mouth at high velocities.
During a sneeze, respiratory droplets are expelled at velocities over
20m/s for brief periods typically lasting up to 0.25 s. Previous studies
have shown that expelled respiratory droplets can travel as far as 7
— 8 m (23-26 ft.). Higher temperatures increase the vapour pressure
and volatilization of respiratory droplets, while higher relative humidity
decreases the amount of volatilization. Their model was compared to
experiments and showed good correlation. Performed computational
fluid dynamics (CFD) simulations of the impact of wind and relative
humidity on the transport and dynamics of respiratory droplets and
confirmed that micro droplets follow the airflow streamlines well and

can travel further than 6 feet.

4.3.2 Breathing and talking

Breathing and talking yield fewer and smaller droplets per exhala-
tion than coughing or sneezing. Talking can yield several times more
droplets than breathing, and singing can yield some times more droplets
than talking. The exhaled velocity during breathing or talking is on the
order of 1 m/s assuming a mouth opening of 4 cm2, an exhaled vol-
ume of 0.5 — 1 L, and a breathing rate of 16 breaths/s (3.75 s/breath).
This yields a Reynolds number on the order of 1000, which is 30 — 40
times less than the Reynolds number for coughing or sneezing. Thus,
the exhaled aerosols during breathing and talking have much lower mo-
mentum than coughing or sneezing and do not propagate as far. How-
ever, because the sizes of the droplets that are emitted during tidal
breathing are small, the exhaled aerosol plume can remain suspended
for long periods. Thus, despite the lower viral load per exhalation event
relative to coughs or sneezes, the persistence of the minor aerosolized
droplets and non-stop nature of breathing and/or talking can increase

the potential for transmission, especially in enclosed spaces with low

12



fresh-air exchange.

4.4 Graphical representation of the spread of infectious

diseases

8 = W dengue
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Figure 4.4: Figure in Latex

This is the graphical representation of spread of infectious diseases.
And this data collected from Govt. Hospital angamaly .The graph
showing the number of infected individuals from the disease malaria,
dengue and chicken pox. And the horizontal axis showing the month

and the vertical axis showing the number of infected.

4.4.1 Malaria
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Figure 4.5: Figure in Latex

This is the graphical representation of the infectious disease malaria.

The vertical axis showing the number of infected and recovered and

13



the horizontal axis showing the month. The graph showing the number
of infected and recovered from the disease malaria. From the graph
we can see that the number of infected is higher than the number of

recovered.

4.4.2 Dengue
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Figure 4.6: Figure in Latex

This is the graphical representation of the infectious disease dengue.
The vertical axis showing the number of infected and recovered and the
horizontal axis showing the month. The graph showing the number of
infected and recovered from the disease dengue. From the graph we can

see that the number of infected is higher than the number of recovered.

4.4.3 Chicken pox

== infected
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Figure 4.7: Figure in Latex

This is the graphical representation of the infectious disease Chicken

pox. The vertical axis showing the number of infected and recovered
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and the horizontal axis showing the month. The graph showing the
number of infected and recovered from the disease chicken pox. From
the graph we can see that the number of infected is higher than the
number of recovered.

From the study of above three graphs of the particular disease malaria,
dengue and chicken pox, I arrive at a conclusion that the number of
infected is always higher than the number of recovered. And the re-
covered is always less than the infected .This is the study that I have

been made. And I arrive at a conclusion that the number of infected is

higher than the recovered.
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Chapter 5

Applications in Modelling of

Infectious Diseases

Mathematical models are being increasingly used to understand the
transmission of infections and to evaluate the potential impact of control
programmes in reducing morbidity and mortality.Determining optimal
control strategies against new or emergent infections, such as SARS-
CoV-2, zika or Ebola, or against HIV, tuberculosis and malaria.Predicting
the impact of vaccination strategies against common infections such
as measles and rubella. Application of mathematical models to disease
surveillance data can be used to address both scientific hypotheses
and disease-control policy questions. Models exactly represent the real
problem situations. Models help managers to take decisions faster and
more accurately. They typically offer convenience and cost advantages

over other means of obtaining the required information on reality.
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Chapter 6

Conclusion

Mathematical modelling with spatial effects plays a significant role in
characterizing and understanding the spread of particular infectious
diseases. Epidemiologists use mathematical models in order to track
the progress of most infectious diseases. They may also discover the
likely outcome of an epidemic or to help manage them by vaccina-
tion.Mathematical models are a key tool for guiding public health mea-
sures, and outputs from epidemiological modelling analyses should be
considered alongside numerous factors (such as potential economic and
mental health effects of interventions) when deciding how to inter-
vene.Models can demonstrate important principles about outbreaks and
determine which interventions are most likely to reduce case numbers

effectively.
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