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ABSTRACT

The purpose of studying Matroids is to provide a unifying abstract treatment of

independence in Graph Theory and Linear Algebra. The basic concepts and prop-

erties of Matroids and Minimum Spanning Tree have been studied in this article.

Examined, how we can obtain a Minimum Spanning Tree using the most powerful

optimization technique, Greedy Algorithm. Thus concluded how we can obtain the

Minimum Spanning Tree using Matroid Algorithm

i.e. Kruskal’s Algorithm in an edge weighted graph, and the analysis of a problem

to find a Minimum Spanning Tree by applying Kruskal’s Python Code helped to

find the optimal solution.

Keywords: Matroids, Independent set, Base, Minimum Spanning Tree, Greedy

Algorithm
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PRELIMINARY

Graph – A graph G is an ordered triplet G=(V(G),E(G),I) where V(G) is a

non-empty set, E(G) is a set disjoint from V(G) and I is an incidence map that

associates with each elements of E(G), an unordered pair of elements (same or dis-

tinct) of V(G). Elements of V(G) are called vertices and the elements of E(G) are

called the edges of G.

End vertices – A vertex v is incident with an edge e if there is an edge at v. Two

vertices are said to be end vertices if they are incident with the same edge.

Self-loop – An edge with same end vertex as end vertices is called self-loop.

Adjacent edges – Two edges are said to be adjacent edges if they are incident on

a same vertex.

Adjacent vertices – Two vertices that are the end vertices of the same edge is

said to be adjacent vertices.

Parallel Edges – Two or more edges are said to be parallel if they are incident

with a same pair of vertices.

Simple Graph – A graph is simple if it does not have any self-loop or parallel

edges.

Degree of a vertex – Degree of a vertex is defined as the number of edges incident

on a vertex.

Walk – It is a finite alternating sequence of edges and vertices in such a way that

it begins and end with a vertex and each edge have end vertices. Vertices can be

repeated in a walk.

If a walk begins and ends at the same vertex then it is called a closed walk. A walk

that is not closed is called open.

Trail – A walk in which no edge is repeated is called a trail.

Path – A trail in which no vertices and no edges are repeated is a path. As a

path is a trail, it is also an open walk.
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Cycle – A closed walk in which no edges and no vertices except the initial and

final vertex appears more than once is known as a cycle.

Connected Graph – A graph in which if every pair of vertices has at least one

path between them is known as connected.

Complete graph – A graph in which every pair of vertices is connected by an edge.

Vertex index - usually a vertex has a name associated with it. Internally, within

the implementation of the graph in computer programs, for the computer to recog-

nise it may be more convenient to refer a vertex using an integer number

SOFTWARE USED:

Python - Python is an Object -Oriented language that was developed in the late

1980s as a scripting langauge. Python maybe viewed as an emerging language,

because it is still being developed and refined.

In its current state, it is an excellent language for developing engeneering

applications. The Python programs are run by an interpreter and its great

advantage is that programs can be tested and debuged quickly, allowing

the user to concentrate more on the principles behind the program and less on the

programming itself.

Python program can be developed in much shorter time than equivalent C programs.
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INTRODUCTION

Many results of graph theory extend or simplify in the theory of matroids. These

include the greedy algorithm for minimum spanning trees, the strong duality be-

tween maximum and minimum vertex cover in bipartite graphs, and the geometric

duality relating planar graphs and their duals.

Matroids arise in many contexts but are special enough to have rich combinato-

rial structure. When a result from graph theory generalizes to matroids, it can

then be interpreted in other special cases. Several difficult theorems about graphs

have found easier proofs using matroids.

Matroids were introduced by Whitney (1935) to study planarity and algebraic spaces

of graphs, by MacLane (1936) to study geometric lattices, and by van der Waerden

(1937) to study independence in vector spaces.
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Chapter 1

INTRODUCTION TO

MATROIDS

1.1 HISTORY

Originally and independently studied by Whitney & B. L. van der Waerden in the

1930’s. Whitney began to see similarities between ideas in graph theory & linear

independence & dimension in vector spaces. After recognizing the properties of

independence, he decided to introduce the concept of Matroids. Eventually, we

would see Matroids as a link between graph theory, linear algebra, and other fields.

1.2 INDEPENDENT SETS

The sets that avoid conflicts is called Independent Set in a graph. It is clear that,

subsets of independent sets are independent and the empty set is independent. For

e.g. Acyclic sets of edges. Let E be the edge set of a graph G, and let X ≤ E be

“independent”, if it contains no cycle.

Every subset of an independent set is independent and the empty set is indepen-

dent. The cycles are the minimal Dependent sets. The Bases are the maximal

independent sets and the Circuits are the minimal dependent sets; BM & CM

denote these families of subsets of E. The Rank of a subset of E is the maximum

size of an independent set in it. The rank function γM is defined by r(x) = max{|Y |:

Y ≤ X, Y € I} A hereditary family is a collection of sets F, such that every subset

of a set in F is also in F. A hereditary system M on E consists of a nonempty ideal

Im of subsets of E.

7



1.3. DEFINITION Matroid and Minimum Spanning Tree

1.3 DEFINITION

A matroid M is a pair (E, I) consisting of a finite set E and a collection of subsets

of E satisfying the following properties;

(i) I is non-empty

(ii)Every subset of every member of I is also in I

More significantly, I satisfies the following augmentation condition:

(iii) If X and Y are in I and |X| = |Y | + 1, then there is an element x in X – Y such

that YU{x} is in I.

1.4 EXAMPLE

Let E={1,2,3} & I = {∅,{1},{2},{3} } we will show that (E,I) is a matroid.

1. I is non-empty since we have some element x in I, for example, x={1}

2. Since ∅ is in I, the subset of every other element is in I, namely {1}, {2}, {3}.

Thus every subset of every member of I is also in I

3. Let X= {1}, then Y= ∅ since |X| = |Y | + 1. That gives us X- Y = {1}. Then,

there is an element x such that Y U {x} is in I, namely x=1. We could show simi-

larly with X = {2} & X= {3}. Therefore, this is a MATROID since it satisfies all

three properties.

1.5 DIFFERENT TYPES OF MATROIDS

1.5.1 TRIVIAL MATROIDS

Given any non-empty finite set E, we can define on it a matroid whose only indepen-

dent set is the empty set ∅. This matroid is the trivial matroid on E, and has rank 0.

1.5.2 DISCRETE MATROID

At the other extreme is the discrete matroid on E, in which every subset of E is

independent. Note that the discrete matroid on E has only one base, E itself, and

that the rank of any subset A is the number of elements in A.

1.5.3 CYCLE MATROID

Consider a graph G & the underlying set E is the set of edges E(G). A subset X <

E is independent if and only if does not contain any cycle of G. The rank function

is given by r(X)=V(G)-K(X), where V(G) is the number of vertices of G & K(X)

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
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1.5. DIFFERENT TYPES OF MATROIDS Matroid and Minimum Spanning Tree

is the number of connected components of the spanning sub-graph of G consisting

of all the vertices of G and edges of X.

1.5.4 UNIFORM MATROID

The trivial matroid and discrete matroid are special cases of the k-uniform ma-

troid on E, whose bases are those subsets of E with exactly k-elements. The trivial

matroid on E is 0-uniform and the discrete matroid is |E|-uniform. Note that the

independent sets are those subsets of E with not more than k elements, and the

rank of any subset A is either |A| or k, whichever is smaller.

For example; consider the complete graph k3, then C(k3) = U2,3 where C(k3) is the

cycle matroid and U2,3 is the uniform matroid

ISOMORPHISM

Here we define two matroids M1 & M2 to be isomorphic if there is a one-one cor-

respondence between their underlying sets E1 & E2 that preserves independence.

Thus, a set of elements of E1 is independent in M1 if & only if the corresponding

set of elements of E2 is independent in M2.

FIG 1.1

Note that, although matroid isomorphism preserves cycles, cut-sets and the number

of edges in a graph, it does not necessarily preserve connectedness, the number of

vertices, or their degrees.

1.5.5 GRAPHIC MATROID

Let G be a graph and M is a matroid of G and C(G) is the cycle matroid. If M is

isomorphic to C(G) then such matroids are called Graphic Matroids.

For example; the matroid M on the set {1, 2, 3} whose bases are {1, 2} and {1, 3}

is a graphic matroid isomorphic to the cycle matroid of the graph G.

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
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1.5. DIFFERENT TYPES OF MATROIDS Matroid and Minimum Spanning Tree

FIG 1.2

1.5.6 COGRAPHIC MATROIDS

G is a graph, the cycle matroid C(G) is not the only matroid that can be defined

on the set of edges of G. Because of this similarity between the properties of cycles

and of cut-sets in a graph, we can construct a matroid by taking the cut-sets of G

as cycles of the matroid. A matroid M is said to be Cographic if M is isomorphic

to M*(G), where M*(G) is the cut-set matroid.

1.5.7 TRANSVERSAL MATROID

This matroid gives us a link between matroids and transversal theory. If E is a

non-empty finite set and if F=(F1, F2,. . . . . . .., Fm) is a family of non-empty subsets

of E, then the partial transversal of F can be taken as the independent sets of a

matroid on E, denoted by M(F) or M(F1, F2,. . . . . . .,Fm). The matroid obtained in

this way is called Transversal matroid.

For example; the graphic matroid M in the previous example is a transversal matroid

on the set {1, 2, 3}. Since its independent sets are the partial transversal of the

family F=(F1, F2), where F1={1} & F2={2,3}.

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
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Chapter 2

PROPERTIES OF MATROIDS

2.1 INTRODUCTION

In this chapter we will see that a hereditary system is a matroid by verifying any of

the property discussed here. We will also discuss how the powerful tool - the greedy

algorithm which yields the optimal independent set and the concept of graph theory

& independence.

2.2 PROPERTIES

Consider the graph G as given below.

FIG 2.1

1. A Base is a maximal independent set.

For, X= {e2, e3, e4, e7, e8, e6, e11, e12 } It is clear that, these edges form a spanning

tree of the graph. Hence a maximal independent sets of a graph is its spanning tree

(For edge weighted graph is its minimum spanning tree). Hence it is termed as a

11



2.2. PROPERTIES Matroid and Minimum Spanning Tree

Base.

FIG 2.1(a)

2. A Circuit is a minimal dependent set.

For, X= {e1, e3, e5, e7, e8, e9, e11, e12, e14 } It is clear that, these edges form a cycle

in the graph. Hence it is minimal dependent set. Hence it is termed as Circuit.

3. Circuits are the subsets X with r(X) = |X|-1.

Here X = {e1, e3, e5, e7, e8, e9, e11, e12, e14},

Then r(X) = |9| -1 = 8.

4. For an independent set X, the rank is equal to its cardinality r(X) =|X|.

(Rank is nothing but, it is the maximum size of an independent set of subset of

finite set E)

If we consider the property 1

X = {e2, e3, e4, e6, e7, e8, e11, e12} Here the maximum size of this independent set

is 8.

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
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2.3. DEFINITION Matroid and Minimum Spanning Tree

That is, r(X) = |X| = 8.

5. All bases have the same cardinality which is called the rank of matroid, r(M).

From FIG 2.1 we can consider some of the bases as

X = {e2, e3, e4, e6, e7, e8, e11, e12}

Y = {e2, e3, e4, e5, e7, e8, e11, e12}

Z = {e1, e5, e9, e6, e10, e13, e14, e12}

Here we see that all maximal independent sets have same cardinality, which is rank

of matroid r(M)

2.3 DEFINITION

A hereditary system M on E is a Matroid if it satisfies the following additional

properties;

where I is the Independent sets, B is the Bases, C is the Circuits and r is the rank

function of M.

(i) Augmentation – if I1 and I2 ∈ I with |I2| > |I1|, then I1 + e ∈ I for some e ∈

I2-I1.

(ii) Uniformity – for every X ⊆ E, the maximal subsets of X belonging to I have the

same size.

(iii) Base Exchange – if B1 and B2 ∈ B, then for all e ∈ B1-B2 there exists f ∈ B2-B1

such that B1-e+f ∈ B.

(iv) Submodularity – for X, Y ⊆ E, r(X∩Y) + r(X∪Y) ≤ r(X) + r(Y).

(v) Weak absorption – r(X) =r(X +e) = r(X +f) implies r(X +e + f) = r(X) when-

ever X ⊆ E & e, f ∈ E.

(vi) Strong absorption – if X, Y ⊆ E & r(X +e) = r(X) ∀ e ∈ Y, then r(X ∪ Y) =

r(X).

(vii) Weak elimination – for c1, c2 (c1 ̸= c2) and x ∈ c1 ∩ c2 there is another element

of C contained in (c1 ∪ c2) – x.

(viii) Induced circuits – if H ∈ I, then H +e contains at most one circuit.

(ix) Greedy algorithm – for each non-negative weight function on E, the greedy

algorithm selects an independent set of maximum total weight.

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
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2.4. THEOREM Matroid and Minimum Spanning Tree

2.4 THEOREM

For a hereditary system M, the conditions defining matroids in Definition 2.3 are

equivalent.

PROOF -

a) We have to, prove that Uniformity implies Base Exchange. From uniformity we

can take X=E, and the cardinality of all bases are same. Now we consider the set

(B1-e) ∪ B2, where B1 & B2 are bases & e is an edge. Apply the uniformity property

to the set (B1-e) ∪ B2. Since all bases are independent sets and consider (B1-e) ∪

B2=Y. Then this gives us the augmentation property of the independent set B1-e

from B2, that implies |B2| > |B1|.

b) We have to, prove that Base Exchange implies augmentation.

Consider two independent sets I1 and I2 from I, with |I2| > |I1|. Now take two bases

B1, B2 ∈ B such that I1 ⊆ B1 & I2 ⊆ B2. Consider the set B1 – I1, apply the Base

Exchange property to this set. It will replace elements of B1 – I1 outside B2 with

the elements of B2.

Assume that B1-I1 ⊆ B2. But if, B1 – I1 ⊆ B2 – I2 then |B1| < |B2| Therefore it is a

contradiction, since the Base Exchange property conveys that all bases have same

cardinality.

If |B1| < |B2| where B1, B2 ∈ B, then we can replace elements in B1-B2 by B2-B1 step

by step, which will obtain a base of cardinality B1 ⊆ B2. But no base is contained

in another. Hence I2 has an element contained in B1-I1. Therefore, we will use that

element to augment I1.

c) We have to, prove that Augmentation implies weak absorption.

We prove this by contrapositive method. Let us assume that

r(X) = r(X +e) = r(X +f) and r(X +e + f) = r(X).

Consider I1 and I2 be the maximum independent subsets of X and of X +e + f. If

|I2| > |I1| then we can expand I1 from I2.

Then augmentation can only add e or f. since I1 is a maximum independent subset of

X. Therefore it is a contradiction to our assumption that r(X) = r(X +e) = r(X +f).

d) We have to, prove that weak absorption implies strong absorption.

Let X, Y ⊆ E. consider |Y −X|. We proceed the proof by mathematical induction

on |Y −X| . When |Y −X| = 1, r(X) = r(X +e) implies, r(X ∪ Y) = r(X). Hence

the result is true for |Y −X| = 1. Assume Y’ = Y – e- f, for e, f ∈ Y-X.

Now by our induction hypothesis, on the proper subset of Y r(X) = r(X ∪ Y’ +e)

= r(X ∪ Y’ +f) = r(X ∪ Y’). Hence r(X) = r(X ∪ Y), i.e. weak absorption yields

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
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2.4. THEOREM Matroid and Minimum Spanning Tree

strong absorption.

e) We have to, prove that strong absorption implies uniformity.

Let Y ⊆ X, i.e. Y is a maximal independent subset. r(Y +e) = r(Y) where e ∈

X-Y. Applying strong absorption property implies that r(X) = r(Y) = |Y |.

Since Y is arbitrary, all maximal independent subset Y have same cardinality.

f) We have to, prove that uniformity implies submodularity.

For submodularity we have to consider two maximal independent subsets X, Y ⊆

E. Consider X ∩ Y, now choose a maximal independent set I1 ∈ X ∩ Y.

Now applying the uniformity property to the set I1 we can augment another maxi-

mal independent subset of X ∪ Y, let it be I2.

Take I2 ∩ X & I2 ∩ Y then both includes I1 also & they are independent subsets of

X and Y.

Hence, r(X ∩ Y) + r(X ∪ Y) = |I1| + |I2| = |I2∩ X | + |I2∩ Y | ≤ r(X) + r(Y) I.e.

r(X ∩ Y) + r(X ∪ Y) ≤ r(X) + r(Y).

Hence we get the submodularity property.

g) We have to, prove that submodualrity implies weak elimination.

Now we can consider the circuits C1 and C2 ∈ C & x ∈ C1 ∩ C2 We know that

r(C1)=|C1|-1 and r(C2)=|C2|-1

It is known that every proper subset of a circuit is independent,

r(C1 ∩ C2) = |C1∩ C2|

Assume (C1∪ C2)− x does not contain a circuit,

then we have r(C1∪ C2)–x =|C1∪ C2| -1.

Now applying the submodularity property toC1 & C2 implies that

|C1∩ C2| + |C1∪ C2| -1 ≤ |C1| + |C2| -2 . Which is a contradiction, to our assumption.

Hence our assumption is wrong, therefore submodularity implies weak elimination.

h) We have to prove that weak elimination implies induced circuits. Suppose C1,

C2 ∈ H+ e (C1, C2 ∈ C) for some H ∈ I then e belongs to both C1 and C2. Now

applying weak elimination we get a circuit contained in (C1 ∪ C2) – e. but we know

that (C1 ∪ C2) – e is independent which is contained in H.

i) We have to prove that induced circuits implies greedy algorithm.

Let w be the weight function. Let the output of the greedy algorithm be H.

Take H* be a maximum weight independent set such that, H ∩ H* is the largest

one. Since H is the output of the greedy algorithm, then H ̸⊆ H* is the largest

one. Assume H ̸= H*. Let a ∈ H-H*, such that a be the first element chosen by the

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
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2.5. GRAPH THEORY & INDEPENDENCE Matroid and Minimum Spanning Tree

greedy algorithm. Since H* is a maximum weight independent set, then H*+e is

dependent therefore it has a unique circuit C. We know that H does not contains C.

Choose b such that b ∈ C-H & H*+e has at most one circuit, H*+a-b ∈ I. Therefore

the optimum of H* obtains w(b) ≥ w(a) —–(1)

Since b and the elements of H chosen earlier than a all contained in H*, b does not

complete a circuit with them. Therefore b was available when the algorithm se-

lected a, which implies w(b) ≤ w(a) —–(2)

From (1) and (2) it implies that w(b) = w(a) and w(H*+a-b)=w(H*)

But |(H∗ + a− b)∩ H | ≥ |H∗∩ H | , this is a contradiction to our assumption, that is

the choice of H*. Hence H=H*.

j) We have to prove that greedy algorithm implies augmentation.

Consider two elements of I, I1 & I2 such that |I1| < |I2|.

We represent a weight function for which the iterative steps of the greedy algorithm

obtains the desired augmentation.

Consider |I1| = m. Let w(a) = m+2 for a ∈ I1 Let w(b) = m+1 for b ∈ I2 - I1 and

let w(e) =0 for e ̸∈ I1 ∪ I2.

Implies w(I2) (m+1)2 > m(m+2) = w(I1) Therefore I1 is not a maximum weighted

independent set. But the algorithm chooses all elements of I1 and then chooses the

element of I2-I1.

Since the greedy algorithm chooses a maximum weighted independent set, the iter-

ation continues after taking in I1 and adds an element e ∈ I2-I1 such that I1+e ∈ I.

Hence the greedy algorithm implies augmentation property.

2.5 GRAPH THEORY & INDEPENDENCE

Here we focuses only on connected graphs. There are two common ways to define

independence in a graph, on the vertices or on the edges. We focus on the edges.

What might it mean for a set of edges to be independent?

When would edges be necessary in a connected graph? Edges exists to connect

vertices. Put another way, edges are how we move from vertex to vertex in a graph.

So some set of edges should be considered independent if, for each edge the removal

of that edge makes some vertices inaccessible to a previously accessible.

Consider the graph G in figure 2.6 with edge set E = {e1, e2,. . . . . . ,e14}

Fig

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
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2.5. GRAPH THEORY & INDEPENDENCE Matroid and Minimum Spanning Tree

Now consider the subset of edges X= {e1, e3, e5, e7, e8, e9, e11, e12, e14} is this an

independent set of edges? No because, the same set of vertices are connected to

one another even if, for example, edges e9 were removed from S. But here the set

X contains a cycle.

Any time some set of edges contains a cycle, it cannot be an independent set of

edges. In any connected graph, a set of edges forming a tree or forest (an acyclic

sub graph) is independent. This makes sense in two different ways; first, a tree or

forest never contains a cycle; second, the removal of any edge from a tree or forest

disconnects some vertices from one another, decreasing accessibility, and so every

edge is necessary.

A maximal such set is a set of edges containing no cycles, which also makes all

vertices accessible to one another. This is called a Spanning Tree. There must be

at least one spanning tree for a connected graph.

Here is the set T of some spanning trees for G:

T = { {e1, e7, e8, e11, e12, e3, e4, e5}, {e1, e3, e2, e4, e6, e8, e10, e12},

{e1, e2, e11, e12, e7, e6, e14, e5}, {e1, e2, e11, e10, e7, e13, e4, e5},

{e1, e5, e6, e9, e10, e12, e13, e14}, {e1, e2, e3, e5, e6, e7, e11, e12},

{e1, e9, e10, e7, e11, e13, e3, e4}, {e2, e11, e10, e8, e13, e6, e14, e4},

{e2, e3, e4, e5, e7, e8, e11, e12}, {e2, e3, e4, e6, e8, e7, e11, e12} }

Here again we see that all maximal independent sets must have the same size.

Spanning trees also have two other important traits:

a) No spanning tree properly contains another spanning tree.

b) Given two spanning trees T1 and T2 and an edge e from T1 we can always find

some edge f from T2 such that {T1-e} ∪ f will also be a spanning tree.

Now we can demonstrate the second condition.

Fig
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Chapter 3

MINIMUM SPANNING TREE

3.1 INTRODUCTION

Minimum spanning trees were first considered by Boruvka shortly after 1920, elec-

tricity was to be supplied to the rural area of Southern Moravia; the problem of

finding as economical a solution as possible for the proposed network was presented

to Boruvka.

He found an algorithm for constructing a minimum spanning tree namely Boruvka’s

Algorithm. But later, Kruskal and Prim also founded algorithms for constructing

a minimum spanning tree.

There are also references to various applications reaching from the obvious exam-

ples of constructing traffic, communication networks, image processing.

3.2 DEFINITION

A Spanning tree of a graph G is a sub-graph T that is:

a) Connected: A graph is connected when it has at least one vertex and there is a

path between every pair of vertices.

b) Acyclic: containing no cycles.

c) Contains all the vertices.

Hence a Minimum Spanning Tree is a subset of the edges of a connected, edge-

weighted un-directed graph that connects all the vertices together, without any cy-

cles and with the minimum possible total edge weight. That is, it is a spanning tree

whose sum of edge weights is as small as possible.

19



3.3. MINIMUM SPANNING TREE-PROBLEM Matroid and Minimum Spanning Tree

The above graph contains 9 vertices and 14 edges. The numbers adjacent to each

edge is its weight. The edges in red color represent the minimum spanning tree of

this graph.

3.3 MINIMUM SPANNING TREE-PROBLEM

The minimum spanning tree problem (MSTP) is an exceeding popular problem

of combinatorial optimization. Methods for its solution have generated important

ideas of modern combinatorics and have played a crucial role in the design of Com-

puter Algorithms.

A typical MSTP is stated as below,

Given a weighted graph G whose nodes represent cities, whose edges represent pos-

sible communication links and edge weights represent the cost of construction or

length of edge/link. One would then wish to construct a communication network

that connects all cities to have minimum cost or of minimum total length.

The importance of MSTP step from several facts

1) Gives an efficient solution, which makes it practical to optimize truly huge graphs

of thousands of vertices.

2) Obvious and direct application in design of computed and communication net-

works.

3) Indirect applications in other problems such as, Network Reliability, Image Seg-

mentation, Travelling Salesman Problem.

EXAMPLE: Find the minimum spanning tree of the graph given below.
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The graph has 8 vertices. Therefore the minimum spanning tree has only 5 edges.

The minimum spanning tree is as given below.

3.4 PROPERTIES

1. Possible multiplicity: If there are n vertices in the graph, then each spanning

tree has n-1 edges.

Proof: First we will prove that if T is a tree with n vertices then it has precisely n-1

edges. We use induction on n when n=1 i.e. T has only one vertex, then since it

has no loops, T cannot have any edge. That is, it has n-1=0 edges. This establishes

that the result is true for n=1.

Now we suppose that the result is true for n=k, where k is some positive integer.

We use this to show that the result is true for n=k+1.

Let T be a tree with k+1 vertices and let n be a vertex of degree 1 in T. Let e = uv

denote the unique edge of T which has u as an end. Then if x and y are vertices in

T both different from u, any path P joining x to y does not go through the vertex

u.

Since if it did it would involve the edge e twice. Then the subgraph T-u obtained

from T by deleting the vertex u is connected.

Moreover if C is a cycle in T-u then C would be a cycle in T-impossible. Since T is

a tree, Thus the subgraph T-u is acyclic. Hence T-u is a tree.

However T-u has k vertices and so by our induction assumption, T-u has k-1 edges.

Since T-u has exactly 1 edge less than T. It follows that T has k edges, as required.

In other words, assuming the result is true for k, we have shown that it is true for

k+1. Thus by the principle of mathematical induction, it is true for all positive

integers k.

A minimum spanning tree of a graph G is a spanning subgraph of G that is a true.

Therefore, a minimum spanning tree with n vertices has precisely n-1 edges.
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3.4. PROPERTIES Matroid and Minimum Spanning Tree

2.Uniqueness

If each edge have a distinct weight then there will be only one, unique minimum

spanning tree. If any two edges have same weight then the MST need not be unique.

Proof:

1. Assume the contrary, that there are two different MSTs A and B.

2. Since A and B differ despite containing the same nodes, there is at least one

edge that belongs to one but not the other. Among such edges, let e1 be the one

with least weight; this choice is unique because the edge weights are all distinct.

Without loss of generality, assume e1 is in A.

3. As B is an MST, e1 ∪B must contain a cycle C with e1.

4. As a tree, A contains no cycles, therefore C must have an edge e2 that is not in

A.

5. Since e1 was chosen as the unique lowest-weight edge among those belonging to

exactly one of A and B, the weight of e2 must be greater than the weight of e1.

As e1 and e2 are part of the cycle C, replacing e2 with e1 in B. Therefore, yields a

spanning tree with a smaller weight. This contradicts the assumption that B is a

MST.

Hence the proof.

3. Minimum Cost Subgraph

Minimum spanning tree is a minimum cost subgraph. i.e. the total cost of the MST

is the least compared to all other subgraph of the original graph.

4. Cycle Property

For any cycle C in the graph, if the weight of an edge e of C is larger than the

individual weights of all other edges of C, then this edge cannot belong to an MST.

Proof: Assume the contrary, i.e. that e belongs to an MST T1. Then deleting e will

break T1 into two sub trees with the two ends of e in different subtrees.

The remainder of C reconnects the subtrees, hence there is an edge f of C with ends

in different subtrees, i.e., it reconnects the subtrees into a tree T2 with weight less

than that of T1, because the weight of f is less than the weight of e.

5. Minimum Cost Edge

If the minimum cost edge e of a graph is unique, then this edge is included in any

MST.

Proof: If e was not included in the MST, removing any of the (larger cost) edges in

the cycle formed after adding e to the MST would yield a spanning tree of smaller

weight.
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3.4. PROPERTIES Matroid and Minimum Spanning Tree

6. Cut Property

This figure shows the cut property of MSTs. T is the only MST of the given graph.

If S = {A,B,D,E}, thus V-S = {C,F}, then there are 3 possibilities of the edge

across the cut(S,V-S), they are edges BC, EC, EF of the original graph. Then, e is

one of the minimum-weight-edge for the cut, therefore S ∪ {e} is part of the MST

T.

For any cut C of the graph, if the weight of an edge e in the cut- set of C is strictly

smaller than the weights of all other edges of the cut-set of C, then this edge belongs

to all MSTs of the graph.

Proof:

Assume that there is an MST T that does not contain e. Adding e to T will

produce a cycle, that crosses the cut once at e and crosses back at another edge e’.

Deleting e’ we get a spanning tree T-{e’} ∪ {e} of strictly smaller weight than T.

This contradicts the assumption that T was a MST. Therefore the MST T contains

the edge e’.
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Chapter 4

APPLICATIONS

4.1 INTRODUCTION

In this chapter, we consider their applications. Beyond unifying distinct areas of

discrete mathematics, matroids are essential in combinatorial optimization. The

greedy algorithm, a powerful optimization technique, can be recognized as a ma-

troid optimization technique. In fact, the greedy algorithm guarantees an optimal

solution only if the fundamental structure is a matroid.

4.2 GREEDY ALGORITHM

4.2.1 DEFINITION

A Weighted Matroid is (E, I, w) where w: E → R the weight of any A ∈ I is given

by Σ x ∈ A w(x). Next, we would like to compute a maximum weight maximal

independent set.

4.2.2 ALGORITHM

1. Sort the elements of E in non-increasing order of their weights.

2. A=∅

3. For i=1 to |E| do

If (A ∪ xi ∈ I)

Then A = A ∪ xi;

4. Return A.
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4.2. GREEDY ALGORITHM Matroid and Minimum Spanning Tree

4.2.3 THEOREM

The solution obtained from the greedy algorithm is optimal.

Proof –

To prove this theorem we will prove some claims.

Claim- 1 An is a maximal independent set, where An is the nth iterative set.

For, suppose An is not maximal. Then there exists C ∈ I such that An C. then

there must be some element xj ∈ C-An. Let B= {xi ∈ An / i≤j } ⊂ A. From our

notation B=Aj-1. Then in the jth iteration we must test whether Aj-1 ∪ {xi} ∈ I.

since xj ∈ C – An , xj An,

hence we must have found that Aj-1 ∪ {xi} ̸∈ I.ButAj − 1∪ {xi} ⊂ C. From the third

condition of matroid Aj-1 ∪ {xi} ∈ I.

That is a contradiction to our assumption. Hence our assumption is wrong. An

must be itself a maximal independent set.

Fig (claim 1)

Claim – 2

Let B(̸= An) be a maximal independent set and s be the smallest index in An – B

and t be the smallest index in B – An. Then s<t.

For, assume that t<s. Let C = {xi ∈ An / i<t}. Again observe that C=At-1 and

C ⊂ B. We must have found that At -1 ∪ {xt} ̸∈ I. But At-1 ∪ {xt} ⊆ B.

From the third condition of matroid At-1 ∪ {xt} ∈ I. Therefore it is a contradiction.

Hence our assumption is wrong. Hence s<t.

Fig (claim 2)

Claim – 3
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4.2. GREEDY ALGORITHM Matroid and Minimum Spanning Tree

An is the maximum weight maximal independent set.

For, assume that An is not a maximum weight maximal independent set. Suppose

B1, B2, B3, . . . Br be maximum weight maximal independent set where r ≥ 1.

Corresponding to each Bi let us consider the inequality si < ti, from claim 2 it is

clear that s1 ∈ An – B1 and t1 ∈ B1 – An (where si & ti being the smallest index

among them). Without loss of generality assume that s1 is the largest index.

Fig

From condition two and three of matroid B’= (B ∪ {xs1})–{xj} ∈ I. Since j ≥

t1 > s1 and the weights are in non-increasing order, so w(xj) ≤ w(xs1) Therefore

wt(B’) ≥ wt(B). since B is a maximum weight maximal independent set so B’ is

also a maximum weight maximal independent set.

Fig

Since An – B’ = An – B – {xs}. The smallest index in An – B’ must be greater

than s1. Let B’=Bp. Therefore sp > s1 i.e. a contradiction. Hence our assumption

is wrong. Hence An must be a maximum weight maximal independent set.

Therefore this algorithm establishes it computes the desired object namely the

maximum weight maximal independent set. If we want to compute the minimum

weight maximal independent set, then we can consider the negation of the weights

in this case, i.e. w’(a)= - w(a) ∀ a ∈ E. The edges are taken in the non- decreasing

order.

Time Complexity

If m is not independent, then m(r) where r is the size of the set being tested. Time

complexity is given by O(n log(n) +
∑n

i=1 m(i)). Suppose it takes m time to deter-
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4.3. AN APPLICATION OF MATROID ALGORITHMMatroid and Minimum Spanning Tree

mine the membership of I. if m is independent of the size of the matroid, then the

time complexity is given by O(n log(n) + n.m) where n=|E|.

4.3 AN APPLICATION OF MATROID ALGORITHM

Let us consider the case where we have to compute the spanning tree in a given edge

weighted graph (V, E, w) such that the total edge weight is minimum. Consider

M= (E, τ , w) for each T ∈ τ (V, T) is a spanning tree.

Now we claim that M is a matroid.

∅ ∈ M this is trivial.

If T ∈ τ , then (V, T) is a spanning tree. Suppose T’ ⊂ T then (V, T’) also cannot

have a cycle. Hence (V, T’) is also a spanning tree. Thus T’ ∈ τ .

Let us consider two spanning trees T1 and T2 such that |T1| ≤ |T2|.

Then we need to show that there exists e’ ∈ T1 – T2

such that (T1 – {e’}) ∪ {e} ∈ τ .

Fig

If we consider the edge e ̸∈ T1 and add in T1, then there creates a cycle. If we

take any other paths of the edge ab we will obtain a cycle. Hence (T1 – e’) ∪ {e} ∈

τ . Hence M= (E, τ , w) is a matroid.

Observe that every spanning tree of the given graph (V, E, w) is a member of

τ .

4.3.1 THEOREM

If (V, T) is a spanning tree of (V, E, w) if and only if T is a maximal independent

set.

PROOF –

In necessary condition assume the contrary.
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Then there exists T’ ∈ τ such that T τ . Suppose e ∈ T’ – T and since T is a

spanning tree, then any two pair has a path, so the edge e in T’ creates a cycle

which implies that T’ ̸∈ τ . This contradiction establishes that the spanning trees

are maximal independent set.

Suppose there are some components in H, then ni represents the number of vertices

in each corresponding component. Then Σni = |V |. Conversely,

assume H ∈ τ which is a maximal independent set and it is not a spanning tree.

Consider the |H| = cardinality of edges in a spanning tree = |V | - 1. Then the num-

ber of edges, |H| =
∑k

i=1 ni – k < |V | - 1. So there must be at least one connected

components with ni vertices and at least ni edges. Then this component must have

cycle. Hence H is a spanning tree.

Therefore the problem of computing a minimum spanning tree in terms of ma-

troid is to compute a minimum weight maximal independent set.

4.4 KRUSKLA’S ALGORITHM

Kruskal’s greedy algorithm for minimum spanning tree can be abstracted to a wider

class of problems when one realises that tree edges T ⊆ E in a graph determine an

independent sets in matroids. In a connected graph, the edges in a spanning tree

is the maximal independent set.

This standard greedy algorithm of ordering the elements by least weight is an op-

timal algorithm for optimally computing a linear function over any matroid.

4.4.1 ALGORITHM

1. Sort the elements of E in non-increasing order of their weights.

2. A=∅

3. For i=1 to |E| do

If (A ∪ xi ∈ I)

Then A = A ∪ xi;

4. Return A.

4.5 PROBLEM

A group of students wants to find the minimum distance between twenty places

in Ernakulam. The students considered it as a graph G= (V, E) in which nodes
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represent the place that they want to visit.

Each edge e is the road link that connects these places. For each pair of nodes u,

v ∈ V they want to select the minimum distance. So that one can find a spanning

tree T of G so that for every pair of nodes u, v the unique path in the tree actually

attains the optimum solution. Therefore, give an algorithm constructing a spanning

tree T which optimises the given problem.

Solution -

We can solve this problem with the help of Kruskal’s algorithm which we have dis-

cussed above.

For a general study of this problem the Python code of Kruskal’s algorithm is used

to solve this problem. Let us consider the 20 places, that student wants to visit.

The places are-

1.Aluva

2.Angamaly

3.Chellanam

4.Chendamangalam

5.Cheranallur

6.Elanji

7.Kadamakkudy

8.Kochi

9.Kodanad

10.Kothamangalam

11.Kumbalam

12.Kuttampuzha

13.Malayattoor

14.Mulavukad

15.Muvattupuzha

16.Nedumbassery

17.Perumbavoor

18.Ramamangalam

19.Thripunithura

20.Vazhakala

The distances are as follows;
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In the above program, first we create a class to represent Graph. Next we create

a init function, for the vertices of the graph, where ’self ’ is a default dictionary to

store the graph.

The join edge function is created to add an edge to the graph. The merge function

is build, so that it does the union of the two sets of u and v. Since it is a union-find

algorithm, first it determines which subset a particular element belong to.

This can be done to determine if two elements are in same subsets. Next it joins

the two subsets into a single subset. But here, it is used to check whether the

undirected, connected graph contains cycle or not.

The next step shows that, it attaches the smaller rank tree under root of higher

rank tree. If ranks are same then make one as root and add one to its rank.

The function kruskal is the important part of the python program, to construct

the MST. The result variable stores the required output & i, e are used as index

variable for sorted edges and result[] respectively.

First the edges are sorted in non-decreasing order of their weight. Next a variable

V(subsets) is created with single elements. In the output graph, we require V-1

edges.

Secondly, it picks the smallest weighted edge and adds the index for next iteration.

If including this edge does not create cycle it is included in the result, then it is

incremented in the result for the next iteration. If cycle is created then the edge is

eliminated.

The output of the Program is given below.

Hence the required solution.
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Chapter 5

CONCLUSION

This study, points to the highly influential role played by Graph theory in Ma-

troids, since there are similarities with linear independence and dimension in vector

spaces.

The study of matroid theory actually simplifies the concept of minimum spanning

tree and its applications with the establishment of the proofs.

The representation of Kruskal’s algorithm i.e. the greedy algorithm achieves the

optimal solution of the problem. It is most convenient and easy to understand and

uses the necessary & sufficient conditions of the sets, to be tested.

The Python code performed here can be considered as the general code for the

computation of a minimum spanning tree.
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